Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 54, 2024 - Issue 2
128
Views
0
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry

, , , , &
Pages 45-56 | Received 25 Oct 2023, Accepted 18 Jan 2024, Published online: 01 Feb 2024

References

  • Acker MG, Auld DS. 2014. Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspect Sci. 1(1-6):56–73. doi: 10.1016/j.pisc.2013.12.001.
  • Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, et al. 2003. The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos. 31(7):815–832. doi: 10.1124/dmd.31.7.815.
  • Blobaum AL, Bridges TM, Byers FW, Turlington ML, Mattmann ME, Morrison RD, Mackie C, Lavreysen H, Bartolomé JM, Macdonald GJ, et al. 2013. Heterotropic activation of the midazolam hydroxylase activity of CYP3A by a positive allosteric modulator of mGlu5: in vitro to in vivo translation and potential impact on clinically relevant drug-drug interactions. Drug Metab Dispos. 41(12):2066–2075. doi: 10.1124/dmd.113.052662.
  • Blobaum AL, Byers FW, Bridges TM, Locuson CW, Conn PJ, Lindsley CW, Daniels JS. 2015. A screen of approved drugs identifies the androgen receptor antagonist flutamide and its pharmacologically active metabolite 2-hydroxy-flutamide as heterotropic activators of cytochrome P450 3A in vitro and in vivo. Drug Metab Dispos. 43(11):1718–1726. doi: 10.1124/dmd.115.064006.
  • Cameron MD, Wen B, Allen KE, Roberts AG, Schuman JT, Campbell AP, Kunze KL, Nelson SD. 2005. Cooperative binding of midazolam with testosterone and alpha-naphthoflavone within the CYP3A4 active site: a NMR T1 paramagnetic relaxation study. Biochemistry. 44(43):14143–14151. doi: 10.1021/bi051689t.
  • Denisov IG, Grinkova YV, Camp T, McLean MA, Sligar SG. 2021. Midazolam as a probe for drug-drug Interactions Mediated by CYP3A4: homotropic Allosteric Mechanism of Site-Specific Hydroxylation. Biochemistry. 60(21):1670–1681. doi: 10.1021/acs.biochem.1c00161.
  • Ducharme J, Polic V, Auclair K. 2019. A covalently attached progesterone molecule outcompetes the binding of free progesterone at an allosteric site of cytochrome P450 3A4. Bioconjug Chem. 30(6):1629–1635. doi: 10.1021/acs.bioconjchem.9b00248.
  • Ekins S, Stresser DM, Williams JA. 2003. In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci. 24(4):161–166. doi: 10.1016/s0165-6147(03)00049-x.
  • European Medicines Agency. EMA. 2012. Concept paper on a revision of the guideline on the investigation of drug interactions. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf.
  • Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. 2010. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos. 38(6):981–987. doi: 10.1124/dmd.110.032094.
  • He R, Dai Z, Finel M, Zhang F, Tu D, Yang L, Ge G. 2023. Fluorescence-based high-throughput assays for investigating cytochrome P450 enzyme-mediated drug-drug interactions. Drug Metab Dispos. 51(10):1254–1272. doi: 10.1124/dmd.122.001068.
  • He F, Zhang W, Zeng C, Xia C, Xiong Y, Zhang H, Huang S, Liu M. 2015. Mechanism of action of panaxytriol on midazolam 1'-hydroxylation and 4-hydroxylation mediated by CYP3A in liver microsomes and rat primary hepatocytes. Biol Pharm Bull. 38(10):1470–1477. doi: 10.1248/bpb.b15-00143.
  • Hlavica P. 2017. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem. 167:100–115. doi: 10.1016/j.jinorgbio.2016.11.025.
  • Houston JB, Kenworthy KE. 2000. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos. 28(3):246–254.
  • Hutzler JM, Tracy TS. 2002. Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos. 30(4):355–362. doi: 10.1124/dmd.30.4.355.
  • Ichikawa T, Tsujino H, Miki T, Kobayashi M, Matsubara C, Miyata S, Yamashita T, Takeshita K, Yonezawa Y, Uno T. 2018. Allosteric activation of cytochrome P450 3A4 by efavirenz facilitates midazolam binding. Xenobiotica. 48(12):1227–1236. doi: 10.1080/00498254.2017.1412540.
  • Keubler A, Weiss J, Haefeli WE, Mikus G, Burhenne J. 2012. Drug interaction of efavirenz and midazolam: efavirenz activates the CYP3A-mediated midazolam 1'-hydroxylation in vitro. Drug Metab Dispos. 40(6):1178–1182. doi: 10.1124/dmd.111.043844.
  • Khan KK, He YQ, Domanski TL, Halpert JR. 2002. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharmacol. 61(3):495–506. doi: 10.1124/mol.61.3.495.
  • Kosugi Y, Takahashi J. 2015. Species differences and substrate specificity of CYP3A heteroactivation by efavirenz. Xenobiotica. 45(4):345–352. doi: 10.3109/00498254.2014.981610.
  • Lewis DF, Lake BG, Dickins M, Goldfarb PS. 2004. Homology modelling of CYP3A4 from the CYP2C5 crystallographic template: analysis of typical CYP3A4 substrate interactions. Xenobiotica. 34(6):549–569. doi: 10.1080/00498250410001691325.
  • Lynch T, Price A. 2007. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 76(3):391–396.
  • Ma JD, Nafziger AN, Rhodes G, Liu S, Bertino JS. Jr. 2006. Duration of pleconaril effect on cytochrome P450 3A activity in healthy adults using the oral biomarker midazolam. Drug Metab Dispos. 34(5):783–785. doi: 10.1124/dmd.105.007831.
  • Mikus G, Heinrich T, Bödigheimer J, Röder C, Matthee AK, Weiss J, Burhenne J, Haefeli WE. 2017. Semisimultaneous midazolam administration to evaluate the time course of CYP3A activation by a single oral dose of efavirenz. J Clin Pharmacol. 57(7):899–905. doi: 10.1002/jcph.879.
  • Mori K, Hashimoto H, Takatsu H, Tsuda-Tsukimoto M, Kume T. 2009. Cocktail-substrate assay system for mechanism-based inhibition of CYP2C9, CYP2D6, and CYP3A using human liver microsomes at an early stage of drug development. Xenobiotica. 39(6):415–422. doi: 10.1080/00498250902822204.
  • Nassar YM, Hohmann N, Michelet R, Gottwalt K, Meid AD, Burhenne J, Huisinga W, Haefeli WE, Mikus G, Kloft C. 2022. Quantification of the time course of CYP3A inhibition, activation, and induction using a population pharmacokinetic model of microdosed midazolam continuous infusion. Clin Pharmacokinet. 61(11):1595–1607. doi: 10.1007/s40262-022-01175-6.
  • Niwa T, Murayama N, Emoto C, Yamazaki H. 2008. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 9(1):20–33. doi: 10.2174/138920008783331121.
  • Obach RS. 2012. Heterotropic effects on drug-metabolizing enzyme activities: in vitro curiosity emerges as a clinically meaningful phenomenon (perhaps?). Clin Pharmacol Ther. 91(3):385–387. doi: 10.1038/clpt.2011.182.
  • Otten JN, Hingorani GP, Hartley DP, Kragerud SD, Franklin RB. 2011. An in vitro, high throughput, seven CYP cocktail inhibition assay for the evaluation of new chemical entities using LC-MS/MS. Drug Metab Lett. 5(1):17–24.
  • Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. 2006. The human intestinal cytochrome P450 "pie". Drug Metab Dispos. 34(5):880–886. doi: 10.1124/dmd.105.008672.
  • Pharmaceuticals and Medical Devices Agency of Japan. MHLW. 2019. Guideline on drug interaction for drug development and appropriate provision of information. http://www.pmda.go.jp/files/000228122.pdf.
  • Polic V, Auclair K. 2017. Allosteric activation of cytochrome P450 3A4 via progesterone bioconjugation. Bioconjug Chem. 28(4):885–889. doi: 10.1021/acs.bioconjchem.6b00604.
  • Sevrioukova IF, Poulos TL. 2013. Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans. 42(9):3116–3126. doi: 10.1039/c2dt31833d.
  • Soars MG, McGinnity DF, Grime K, Riley RJ. 2007. The pivotal role of hepatocytes in drug discovery. Chem Biol Interact. 168(1):2–15. doi: 10.1016/j.cbi.2006.11.002.
  • Spaggiari D, Geiser L, Daali Y, Rudaz S. 2014. A cocktail approach for assessing the in vitro activity of human cytochrome P450s: an overview of current methodologies. J Pharm Biomed Anal. 101:221–237. doi: 10.1016/j.jpba.2014.03.018.
  • Stresser DM, Mao J, Kenny JR, Jones BC, Grime K. 2014. Exploring concepts of in vitro time-dependent CYP inhibition assays. Expert Opin Drug Metab Toxicol. 10(2):157–174. doi: 10.1517/17425255.2014.856882.
  • Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020. 2020 FDA drug-drug interaction guidance: a comparison analysis and action plan by pharmaceutical industrial scientists. Curr Drug Metab. 21(6):403–426. doi: 10.2174/1389200221666200620210522.
  • Tu DZ, Mao X, Zhang F, He RJ, Wu JJ, Wu Y, Zhao XH, Zheng J, Ge GB. 2020. Reversible and irreversible inhibition of cytochrome P450 enzymes by methylophiopogonanone A. Drug Metab Dispos. 49(6):459–469. doi: 10.1124/dmd.120.000325.
  • U. S. Food and Drug Administration. FDA Center for Drug Evaluation and Research. 2020. Guidance for industry; in vitro drug interaction studies—cytochrome P450 enzyme- and transporter- mediated drug interactions. https://www.fda.gov/media/134582/download.
  • U. S. Food and Drug Administration. FDA Center for Drug Evaluation and Research. 2022. Drug development and drug interactions | table of substrates, inhibitors and inducers. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
  • Walsky RL, Obach RS. 2004. Validated assays for human cytochrome P450 activities. Drug Metab Dispos. 32(6):647–660. doi: 10.1124/dmd.32.6.647.
  • Wang RW, Newton DJ, Liu N, Atkins WM, Lu AY. 2000. Human cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent. Drug Metab Dispos. 28(3):360–366.
  • Wang X, Sun M, New C, Nam S, Blackaby WP, Hodges AJ, Nash D, Matteucci M, Lyssikatos JP, Fan PW, et al. 2015. Probing mechanisms of CYP3A time-dependent inhibition using a truncated model system. ACS Med Chem Lett. 6(8):925–929. doi: 10.1021/acsmedchemlett.5b00191.
  • Weaver R, Graham KS, Beattie IG, Riley RJ. 2003. Cytochrome P450 inhibition using recombinant proteins and mass spectrometry/multiple reaction monitoring technology in a cassette incubation. Drug Metab Dispos. 31(7):955–966. doi: 10.1124/dmd.31.7.955.
  • Wienkers LC, Heath TG. 2005. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 4(10):825–833. doi: 10.1038/nrd1851.
  • Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. 2004. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 32(11):1201–1208. doi: 10.1124/dmd.104.000794.
  • Wright WC, Chenge J, Chen T. 2019. Structural perspectives of the CYP3A family and their small molecule modulators in drug metabolism. Liver Res. 3(3-4):132–142. doi: 10.1016/j.livres.2019.08.001.
  • Xiao K, Gao J, Weng SJ, Fang Y, Gao N, Wen Q, Jin H, Qiao HL. 2019. CYP3A4/5 activity probed with testosterone and midazolam: correlation between two substrates at the microsomal and enzyme levels. Mol Pharm. 16(1):382–392. doi: 10.1021/acs.molpharmaceut.8b01043.
  • Yamaguchi Y, Akiyoshi T, Kawamura G, Imaoka A, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. 2021. Comparison of the inhibitory effects of azole antifungals on cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet. 38:100384. doi: 10.1016/j.dmpk.2021.100384.
  • Yang J, Atkins WM, Isoherranen N, Paine MF, Thummel KE. 2012. Evidence of CYP3A allosterism in vivo: analysis of interaction between fluconazole and midazolam. Clin Pharmacol Ther. 91(3):442–449. doi: 10.1038/clpt.2011.178.
  • Zhuang X, Zhang T, Yue S, Wang J, Luo H, Zhang Y, Li Z, Che J, Yang H, Li H, et al. 2016. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib—enhancement by ketoconazole. Biochem Pharmacol. 121:67–77. doi: 10.1016/j.bcp.2016.09.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.