214
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Application of polymeric nanofibers in medical designs, part II: Neural and cardiovascular tissues

Pages 957-970 | Received 07 Mar 2016, Accepted 16 Apr 2016, Published online: 18 Jul 2016

References

  • Nikalje, A. P. Nanotechnology and its applications in medicine. Nikalje. Med. Chem. 2015, 5, 81.
  • Ai, J.; Biazar, E.; Jafarpour, M.; Montazeri, M.; Majdi, A.; Aminifard, S.; Zafari, M.; Akbari, H. R.; Rad, H. Nanotoxicology - nanoparticles safety at biomedical designs. Int. J. Nanomed. 2011, 6, 1117.
  • Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Chemical vapour based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 1998, 10, 260.
  • Cui, H.; Zhou, O.; Stoner, B. R. Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000, 88, 6072.
  • Doshi, J.; Reneker, D. H. Electospinning process and application of electrospun fibers. J. Electrostat. 1995, 35, 151.
  • Reneker, D. H.; Chun, I. Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology 1996, 7, 216.
  • Bahrami, H.; Heidari, S. K.; Jafari Chari, A.; Biazar, E. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects. Artif. Cell. Nanomed. B 2015 DOI: 10.3109/21691401.2015.1062390
  • Frenot, A.; Chronakis, I. S. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 2003, 8, 64.
  • Hosseinkazemi, H.; Biazar, E.; Bonakdar, S.; Ebadi, M. T.; Shokrgozar, M. A.; Rabiee, M. Modification of PCL electrospun nanofibrous mat with Calendula officinalis extract for improved interaction with cells. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 459.
  • Sahebalzamani, A.; Biazar, E.; Shahrezaei, M.; Hosseinkazemi, H.; Rahiminavaieet, H. Surface modification of PHBV nanofibrous mat by Laminin protein and its cellular study. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 149.
  • Sahebalzamani, A.; Biazar, E. Modification of poly caprolactone nanofibrous mat by laminin protein and its cellular study. J. Biomater. Tissue Eng. 2014, 4, 423.
  • Tavirani, R.; Biazar, E.; Ai, J.; Heidari, S.; Asefnejad, A. Fabrication of collagen-coated poly (beta-hydroxy butyrate-co-beta-hydroxyvalerate) nanofiber by chemical and physical methods. Oriental J. Chem. 2011, 27, 385.
  • Heidari, S.; Biazar, E.; Rezaei, M.; Rahmati, M.; Ronaghi, A.; Ebrahimi, M.; Rad, H.; Sahebalzamani, A.; Rakhshan, A.; Afsordeh, K. The healing effect of unrestricted somatic stem cells loaded in collagen-modified nanofibrous PHBV scaffold on full-thickness skin defects. Artif. Cell Nanomater. B 2014, 42, 210.
  • Biazar, E.; Baradaran, A. R.; Heidari, S.; Tavakolifard, S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J. Biomater. Sci.-Polym. E 2015, 26, 1139.
  • Ai, J.; Heidari, S.; Ghorbani, F.; Ejazi, F.; Biazar, E.; Asefnejad, A.; Pourshamsian, K.; Montazeri, M. Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method and its cellular study. J. Nanomater. 2011, 2011, 1.
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of limbal stem cells on PHBV/gelatin nanofibrous scaffold for ocular epithelial regeneration. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 879.
  • Biazar, E.; Heidari, S. Effects of chitosan cross linked nanofibrous PHBV scaffold combined with mesenchymal stem cells on healing of full-thickness skin defects. J. Biomed. Nanotechnol. 2013, 9, 1471.
  • Biazar, E.; Heidari, S.; Sahebalzamani, A.; Hamidi, M.; Ebrahimi, M. The healing effect of unrestricted somatic stem cells loaded in nanofibrous polyhydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J. Biomater. Tissue Eng. 2014, 4, 20.
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of stem cells on nanofibrous scaffold for ocular surface bioengineering. ASAIO J. 2015, 61, 605.
  • Baradaran, A. R.; Biazar, E.; Heidari, S. Cellular response of limbal stem cells on polycaprolactone nanofibrous scaffolds for ocular epithelial regeneration. Curr. Eye Res. 2015, 41, 326–333.
  • Biazar, E.; Khorasani, M. T.; Montazeri, N.; Pourshamsian, K.; Daliri, M.; Rezaei, M. T.; Jabarvand, M. B.; Khoshzaban, A.; Heidari, S. K.; Jafarpour, M.; Roviemiab, Z. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int. J. Nanomed. 2010, 5, 839.
  • Horner, P. J.; Gage, F. H. Regenerating the damaged central nervous system. Nature 2000, 407, 963.
  • Biazar, E.; Heidari, S. K. Gelatin-modified nanofibrous PHBV tube as artificial nerve graft for rat sciatic nerve regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 330.
  • Biazar, E.; Heidari, S. K.; Sahebalzamani, A.; Heidari, M. Design of an oriented porous polymeric guide for neural regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 753.
  • Kim, H.; Cooke, M. J.; Shoichet, M. S. Creating permissive microenvironments for stem cell transplantation into the central nervous system. Trends Biotechnol. 2012, 30, 55.
  • Walker, P. A.; Aroom, K. R.; Jimenez, F.; Shah, S. K.; Harting, M. T.; Gill, B. S.; Cox, C. S. J. Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Rev. 2009, 5, 283.
  • Wang, M.; Zhai, P.; Chen, X.; Schreyer, D. J.; Sun, X.; Cui, F. Bioengineered scaffolds for spinal cord repair. Tissue Eng Part B. 2011, 17, 177.
  • Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harrington, D. A.; Kessler, J. A.; Stupp, S. I. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004, 303, 1352.
  • Silva, G. A. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol. 2005, 63, 301.
  • Hung, A. M.; Stupp, S. I. Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography. Nano Lett. 2007, 7, 1165.
  • Tysseling-Mattiace, V. M.; Sahni, V.; Niece, K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008, 28, 3814.
  • Guo, J.; Leung, K. K. G.; Su, H.; Yuan, Q. J.; Wang, L.; Chu, T. H.; Zhang, W.; Pu, J. K. S.; Ng, G. K. P.; Wong, W. M.; Dai, X.; Wu, W. T. Self-assembling peptide nanofi ber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine. 2009, 5, 345.
  • Guo, J.; Su, H.; Zeng, Y.; Liang, Y. X.; Ellis-Behnke, R. G.; So, K. F.; Wu, W. Reknitting the injured spinal cord by self-assembling peptide nanofi ber scaffold. Nanomedicine. 2007, 3, 311.
  • Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 2006, 119, 1.
  • Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering. Nanoscale. 2012, 4, 2946.
  • Semino, C. E.; Kasahara, J.; Hayashi, Y.; Zhang, S. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng. 2004, 10, 643.
  • Xie, J.; Willerth, S. M.; Li, X.; Macewan, M. R.; Rader, A.; Sakiyama-Elbert, S. E.; Xia, Y. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009, 30, 354.
  • Zamani, F.; Amani-Tehran, M.; Latifi, M.; Shokrgozar, M. A.; Zaminy, A. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds. J. Biomed. Mater. Res. A 2014, 102, 506.
  • Kriebel, A.; Rumman, M.; Scheld, M.; Hodde, D.; Brook, G.; Mey, J. Three-dimensional configuration of orientated fibers as guidance structures for cell migration and axonal growth. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 356.
  • Ameri, B. R.; Biazar, E. Development of oriented nanofibrous silk guide for repair of nerve defects. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 91.
  • Hu, A.; Zuo, B.; Zhang, F.; Lan, Q.; Zhang, H. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen. Res. 2012, 7, 1171.
  • Allmeling, C.; Jokuszies, A.; Reimers, K.; Kall, S.; Vogt, P. M. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J. Cell Mol. Med. 2006, 10, 770.
  • Wang, G.; Hu, X.; Lin, W.; Dong, C.; Wu, H. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering. In Vitro Cell Dev. Biol. Anim. 2011, 47, 234.
  • Tohill, M.; Mantovani, C.; Wiberg, M.; Terenghi, G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci. Lett. 2004, 362, 200.
  • Biazar, E. Polyhydroxyalkanoates as potential biomaterials for neural tissue regeneration. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 898.
  • Majdi, A.; Biazar, E.; Heidari, S. Fabrication and comparison of electro-spun poly hydroxy butyrate valrate nanofiber and normal film and its cellular study. Oriental J. Chem. 2011, 27, 523.
  • Biazar, E.; Heidari, S.; Pouya, M.; Rad, H.; Omraninava, M.; Azarbakhsh, M.; Hooshmand, S. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects. Neural Regen. Res. 2013, 8, 2266.
  • Biazar, E.; Heidari, S.; Pouya, M. Efficacy of nanofibrous conduits in repair of long segment sciatic nerve defects. Neural Regen. Res. 2013, 8, 2501.
  • Biazar, E.; Heidari, S. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration. ASAIO J. 2015, 61, 357.
  • Biazar, E.; Heidari, S. Rat sciatic nerve regeneration across a 30-mm defect bridged by a nanofibrous PHBV and Schwann cell as artificial nerve graft. Cell Commun. Adhes. 2013, 20, 41.
  • Biazar, E.; Heidari, S. Chitosan-cross linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. ASAIO J. 2013, 59, 651.
  • Masaeli, E.; Morshed, M.; Nasr-Esfahani, M. H.; Sadri, S.; Hilderink, J.; Van Blitterswijk, C. A.; Moroni, L. Fabrication, characterization and cellular compatibility of Poly(Hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE 2013, 8, 57157.
  • Prabhakaran, M. P.; Vatankhah, E.; Ramakrishna, S. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol. Bioeng. 2013, 24, 2775.
  • Biazar, E.; Zhang, Z.; Heidari, S. Cellular orientation on micro-patterned biocompatible PHBV film. J. Paramed. Sci. 2010, 1, 74.
  • Biazar, E.; Heidari, S.; Pouya, M. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cell as artificial nerve graft. Cell Commun. Adhes. 2013, 20, 93.
  • Jiang, X.; Mi, R.; Hoke, A.; Chew, S. Y. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J. Tissue Eng. Regen. Med. 2014, 8, 377.
  • Karimi, M.; Biazar, E.; Heidari, S.; Ronaghi, A.; Doostmohamadpour, J.; Janfada, A.; Montazeri, A. Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with schwann cell as artificial nerve graft. ASAIO J. 2014, 60, 224.
  • Biazar, E.; Heidari, S. Development of chitosan-crosslinked nanofi brous PHBV guide for repair of nerve defects. Artif. Cell Nanomed. B. 2014, 42, 385.
  • Wang, W.; Itoh, S.; Konno, K.; Kikkawa, T.; Ichinose, S.; Sakai, K.; Ohkuma, T.; Watabe, K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. Biomed. Mater. Res. A. 2009, 15, 994.
  • Bini, T. B.; Gao, S.; Tan, T. C.; Wang, S.; Lim, A.; Hai, L. B.; Ramakrishna, S. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanof ibre tubes for peripheral nerve regeneration. Nanotechnology 2004, 15, 1459.
  • Prabhakaran, M. P.; Venugopal, J.; Chan, C. K.; Ramakrishna, S. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 2008, 19, 455102.
  • Panseri, S.; Cunha, C.; Lowery, J.; Del Carro, U.; Taraballi, F.; Amadio, S.; Vescovi, A.; Gelain, F. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 2008, 8, 39.
  • Deepika, G.; Venugopal, J.; Molamma, P.; Giri Dev, V. R.; Ramakrishna, S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009, 5, 2560.
  • Dubey, N.; Letourneau, P. C.; Tranquillo, R. T. Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp. Neurol. 1999, 158, 338.
  • Yang, F.; Xu, C. Y.; Kotaki, M.; Wang, S.; Ramakrishna, S. Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J. Biomater. Sci. Polym. Ed. 2004, 15, 1483.
  • Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603.
  • Wang, H. B.; Mullins, M. E.; Cregg, J. M.; Hurtado, A.; Oudega, M.; Trombley, M. T.; Gilbert, R. J. Creation of highly aligned electrospun poly-l-lactic acid fibers for nerve regeneration applications. J. Neural Eng. 2009, 6, 016001/1–15.
  • Kim, Y. T.; Haftel, V. K.; Kumar, S.; Bellamkonda, R. V. The role of alignedpolymer fiber-based constructs in the bridging of long peripheralnerve gaps. Biomaterials 2008, 29, 3117.
  • Koh, H. S.; Yong, T.; Ramakrishna, S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 2008, 29, 3574.
  • Koh, H.; Yong, T.; Teo, W.; Chan, C.; Puhaindran, M.; Tan, T.; Lim, A.; Lim, B.; Ramakrishna, S. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J. Neural Eng. 2010, 7, 046003.
  • Corey, J. M.; Lin, D. Y.; Mycek, K. B.; Chen, Q.; Samuel, S.; Feldman, E. L.; Martin, D. C. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. A. 2007, 83, 636.
  • Wang, Y.; Zhao, Z.; Zhao, B.; Qi, H. X.; Peng, J.; Zhang, L.; Xu, W. J.; Hu, P.; Lu, S. B. Biocompatibility evaluation of electrospun aligned poly(propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Chin. Med. J. (Engl.) 2011, 124, 2361.
  • Chow, W. N.; Simpson, D. G.; Bigbee, J. W.; Colello, R. J. Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries. Neuron Glia Biol. 2007, 3, 119.
  • Lim, S. H.; Liu, X. Y.; Song, H.; Yarema, K. J.; Mao, H. Q. The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials 2010, 31, 9031.
  • Zamani, F.; Latifi, M.; Amani-Tehran, M.; Shokrgozar, M. A. Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology. Fiber Polym. 2013, 14, 698.
  • Wittmer, C. R.; Claudepierre, T.; Reber, M.; Wiedemann, P.; Garlick, J. A.; Kaplan, D.; Eglescorresponding, C. Multifunctionalized electrospun silk fibers promote axon regeneration in central nervous system. Adv. Funct. Mater. 2011, 21, 4202.
  • Liu, T.; Xu, J. Y.; Chan, B. P.; Chew, S. Y. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J. Biomed. Mater. Res. A 2012, 100A, 236.
  • Kuihua, Z.; Chunyang, W.; Cunyi, F.; Xiumei, M. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J. Biomed. Mater. Res. A 2013, 102, 2680.
  • Wang, C. Y.; Zhang, K. H.; Fan, C. Y.; Mo, X. M.; Ruan, H. J.; Li, F. F. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater. 2011, 7, 634.
  • Wang, W.; Itoh, S.; Matsuda, A.; Aizawa, T.; Demura, M.; Ichinose, S.; Shinomiya, K.; Tanaka, J. Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence. J. Biomed. Mater. Res. A 2008, 85, 919.
  • Bockelmann, J.; Klinkhammer, K.; von Holst, A.; Seiler, N.; Faissner, A.; Brook, G. A.; Klee, D.; Mey, J. Functionalization of electrospun poly(epsilon-caprolactone) fibers with the extracellular matrix-derived peptide GRGDS improves guidance of schwann cell migration and axonal growth. Tissue Eng. A 2011, 17, 475.
  • Zhan, X.; Gao, M.; Jiang, Y.; Zhang, W.; Wong, W. M.; Yuan, Q.; Su, H.; Kang, X.; Dai, X.; Zhang, W.; Guo, J.; Wu, W. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine 2013, 9, 305.
  • Gao, M.; Guo, J.; Leung, G. K. K.; Wu, W. Use of self-assembly nanofibre biomaterials for neural repair after injury. In: Advances in Nanofibers, Maguire, R. editor. Rijeka, Croatia: InTech, 2013.
  • Schiller, J. S.; Lucas, J. W.; Peregoy, J. A. Summary health statistics for U. S. adults: National Health Interview Survey, 2011. National Center for Health Statistics. Vital Health Stat. 2012, 10, 256.
  • Kochanek, K. D.; Xu, J.; Murphy, S. L.; Miniño, A. M.; Kung, H. C. National vital statistics reports. Vital Stat. Rep. 2011, 59, 1.
  • Venugopal, J.; Molamma, P.; Shayanti, M.; Rajeswari, R.; Kai, Dan.; Ramakrishna, S. Biomaterial strategies for alleviation of myocardial infarction. J. Royal Soc. Interface 2012, 9, 1.
  • Shayanti, M.; Venugopal, J.; Rajeswari, R.; Ramakrishna, S.; Raghunath, M. Multimodal biomaterial strategies for regeneration of infarcted myocardium. J. Mater. Chem. 2010, 20, 8819.
  • Ravichandran, R.; Sundarrajan, S.; Venugopal, J.; Mukherjee, S.; Ramakrishna, S. Applications of conducting polymers and their issues in biomedical engineering. J. Royal Soc. Interface. 2010, 7, 559.
  • Zong, X.; Bien, H.; Chung, C. Y.; Yin, L.; Fang, D.; Hsiao, B. S.; Chu, B.; Entcheva, E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005, 26, 5330.
  • Montazeri, M.; Rashidi, N.; Biazar, E.; Rad, H.; Sahebalzamani, M. A.; Heidari, S. K.; Majdi, A. Compatibility of cardiac muscle cells on coated-gelatin electro-spun polyhydroxybutyrate/valerate nano fibrous film. Biosci. Biotechnol. Res. Asia 2011, 8, 515.
  • Rockwood, D. N.; Akins, R. E.; Parrag, I. C.; Woodhouse, K. A.; Rabolt, J. F. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 2008, 29, 4783.
  • Shin, M.; Ishii, O.; Sueda, T.; Vacanti, J. P. Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 2004, 25, 3717.
  • Shayanti, M.; Venugopal, J.; Rajeswari, R.; Ramakrishna, S.; Raghunath, M. Evaluation of the biocompatibility of PLACL/ collagen nanostructured matrices with cardiomyocytes as a model for the regeneration of infarcted myocardium. Adv. Funct. Mater. 2011, 21, 2291.
  • Ravichandran, R.; Venugopal, J. R.; Sundarrajan, S.; Mukherjee, S.; Ramakrishna, S. Poly(glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng. Part A 2011, 17, 1363.
  • Khan, M.; Xu, Y.; Hua, S.; Johnson, J.; Belevych, A.; Janssen, P. M.; Gyorke, S.; Guan, J.; Angelos, M. G. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 2015, 10, e0126338.
  • Hussain, A.; Collins, G.; Yip, D.; Cho, C. H. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol. Bioeng. 2013, 110, 637.
  • Jiangwei, C.; Yabin, W.; Sai, M.; Xiaotian, Z.; Feng, C. Silk fibroin/chitosan nanofibers based adipose tissue-derived mesenchymal stem cell patches prevent myocardial remodeling after myocardial infarction in rat. J. Am. Coll. Cardiol. 2014, 64(16 Suppl).
  • Prabhakaran, M. P.; Kai, D.; Ghasemi-Mobarakeh, L.; Ramakrishna, S. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed. Mater. 2011, 6, 055001.
  • Lin, Y. D.; Luo, C. Y.; Hu, Y. N.; Yeh, M. L.; Hsueh, Y. C.; Chang, M. Y.; Tsai, D. C.; Wang, J. N.; Tang, M. J.; Wei, E. I. H.; Springer, M. L.; Hsieh, P. C. H. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci. Transl. Med. 2012, 4, 146ra109.
  • Stout, D. A.; Basu, B.; Webster, T. J. Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater. 2011, 7, 3101.
  • Shevach, M.; Maoz, B. M.; Feiner, R.; Shapira, A.; Dvir, T. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J. Mater. Chem. B 2013, 1, 5210.
  • Tremblay, C.; Ruel, J.; Bourget, J. M.; Laterreur, V.; Vallières, K.; Tondreau, M. Y.; Lacroix, D.; Germain, L.; Auger, F. A. A new construction technique for tissue-engineered heart valves using the self-assembly method. Tissue Eng. Part C Methods 2014, 20, 905.
  • Dubé, J.; Bourget, J. M.; Gauvin, R.; Lafrance, H.; Roberge, C. J.; Auger, F. A.; Germain, L. Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach. Acta Biomater. 2014, 10, 3563.
  • Mironov, V.; Kasyanov, V.; Nagy-Mehesz, A.; Moreno, R.; Hajdu, Z.; Trusk, T.; Ozolanta, I.; Murovska, M.; Wu, Y.; Yao, H.; Beachley, V.; Wen, X.; Bradshaw, A.; Visconti, R.; Norris, R.; Markwald, R. Tissue engineering of heart valve leaflet by self-assembly of tissue spheroids biofabricated from human fat tissue derived stem cells. World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 2009.
  • Mo, X.; Weber, H. J. Electrospinning P(LLA-CL) nanofiber: a tubular scaffold fabrication with circumferential alignment. Macromol. Symp. 2004, 217, 413.
  • Mo, X. M.; Xu, C. Y.; Kotaki, M.; Ramakrishna, S. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004, 25, 1883.
  • Xu, C. Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877.
  • Ma, Z.; Kotaki, M.; Yong, T.; He, W.; Ramakrishna, S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers toward development of a new material for blood vessel engineering. Biomaterials 2005, 26, 2527.
  • Boland, E. D.; Matthews, J. A.; Pawlowski, K. J.; Simpson, D. G.; Wnek, G. E.; Bowlin, G. L. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front. Biosci. 2004, 9, 1422.
  • McKenna, K. A.; Hinds, M. T.; Sarao, R. C.; Wu, P. C.; Maslen, C. L.; Glanville, R. W.; Babcock, D.; Gregory, K. W. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft. Biomater. Acta Biomater. 2012, 8, 225.
  • de Valence, S.; Tille, J.; Mugnai, D.; Mrowczynski, W.; Gurny, R.; Möller, M.; Walpoth, B. H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 2012, 33, 38.
  • de Valence, S.; Tille, J.; Giliberto, J. P.; Mrowczynski, W.; Gurny, R.; Walpoth, B. H.; Möller, M. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 2012, 8, 3914.
  • Kuwabara, F.; Narita, Y.; Yamawaki-Ogata, A.; Satake, M.; Kaneko, H.; Oshima, H.; Usui, A.; Ueda, Y. Long-term results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacement model. J. Artif. Organs 2012, 15, 399.
  • Iwasaki, K.; Kojima, K.; Kodama, S.; Paz, A. C.; Chambers, M.; Umezu, M.; Vacanti, C. A. Bioengineered three-layered robust and elastic artery using hemodynamically equivalent pulsatile bioreactor. Circulation 2008, 118, 52.
  • Wu, W.; Allen, R. A.; Wang, Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 2012, 18, 1148.
  • Roh, J. D.; Nelson, G. N.; Brennan, M. P.; Mirensky, T. L.; Yi, T.; Hazlett, T. F.; Tellides, G.; Sinusas, A. J.; Pober, J. S.; Saltzman, W. M.; Kyriakides, T. R.; Breuer, C. K. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 2008, 29, 1454.
  • Uchida, T.; Ikeda, S.; Oura, H.; Tada, M.; Nakanob, T.; Fukuda, T.; Matsuda, T.; Negoro, M.; Arai, F. Development of biodegradable scaffolds based on patient-specific arterial configuration. J. Biotechnol. 2008, 133, 213.
  • Pektok, E.; Nottelet, B.; Tille, J.; Gurny, R.; Kalangos, A.; Moeller, M.; Walpoth, B. H. Degradation and healing characteristics of small-diameter poly(ϵ-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 2008, 118, 2563.
  • Wise, S. G.; Byrom, M. J.; Waterhouse, A.; Bannon, P. G.; Ng, M. K. C.; Weiss, A. S. A. multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 2011, 7, 295.
  • Vatankhah, E.; Prabhakaran, M. P.; Semnani, D.; Razavi, S.; Morshed, M.; Ramakrishna, S. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers 2014, 101, 1165.
  • Lee, S. J.; HeoD. N.; Park, J. S.; Kwon, S. K.; Lee, J. H.; Lee, J. H.; Kim, W. D.; Kwon, I. K.; Park, S. A. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys. Chem. Chem. Phys. 2015, 17, 2996.
  • Wang, H.; Feng, Y.; Zhao, H.; Xiao, R.; Lu, J.; Zhang, L.; Guo, J. Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromol. Res. 2012, 20, 347.
  • Huang, C.; Geng, X.; Qinfei, K.; Xiumei, M.; Al-Deyab, S. S.; El-Newehy, M. Preparation of composite tubular grafts for vascular repair via electrospinning. Prog. Nat. Sci. Mater. Int. 2012, 22, 108.
  • Ishii, O.; Shin, M.; Sueda, T.; Vacanti, J. P. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J. Thorac. Cardiovasc. Surg. 2005, 130, 1358.
  • Kurobe, H.; Maxfield, M. W.; Tara, S.; Rocco, K. A.; Bagi, P. S.; Yi, T.; Udelsman, B.; Zhuang, Z. W.; Cleary, M.; Iwakiri, Y.; Breuer, C. K.; Shinoka, T. Development of small diameter nanofiber tissue engineered arterial grafts. PLoS ONE 2015, 10, e0120328.
  • Liu, Y.; Xiang, K.; Chen, H.; Li, Y.; Hu, Q. Composite vascular repair grafts via micro-imprinting and electrospinning. AIP Adv. 2015, 5, 041318.
  • Oh, B.; Lee, C. H. Advanced cardiovascular stent coated with nanofiber. Mol. Pharm. 2013, 10, 4432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.