208
Views
1
CrossRef citations to date
0
Altmetric
Articles

Fabrication of injectable bone substitute loading porous simvastatin-loaded poly(lactic-co-glycolic acid) microspheres

, , , , , , & ORCID Icon show all
Pages 351-362 | Received 18 Apr 2018, Accepted 05 Jan 2019, Published online: 29 Jan 2019

References

  • Nguyen, T.-H.; Ventura, R.; Min, Y.-K.; Lee, B.-T. Genipin Cross-Linked Polyvinyl Alcohol-Gelatin Hydrogel for Bone Regeneration. JBiSE. 2016, 09, 419. doi:10.4236/jbise.2016.99037.
  • Nguyen, T. H.; Lee, B. T. In Vitro and in Vivo Studies of rhBMP2‐coated PS/PCL Fibrous Scaffolds for Bone Regeneration. J. Biomed. Mater. Res. 2013, 101, 797–808. doi:10.1002/jbm.a.34382.
  • Jang, D.-W.; Nguyen, T.-H.; Sarkar, S. K.; Lee, B.-T. Microwave Sintering and in Vitro Study of Defect-free Stable Porous Multilayered HAp–ZrO2 Artificial Bone Scaffold. Sci. Technol. Adv. Mater. 2012, 13, 035009. doi:10.1088/1468-6996/13/3/035009.
  • Nguyen, T.-H.; Bao, T. Q.; Park, I.; Lee, B.-T. A Novel Fibrous Scaffold Composed of Electrospun Porous Poly (ɛ-caprolactone) Fibers for Bone Tissue Engineering. J. Biomater. Appl. 2013, 28, 514–528. doi:10.1177/0885328212462257.
  • Grimandi, G.; Weiss, P.; Millot, F.; Daculsi, G. In Vitro Evaluation of a New Injectable Calcium Phosphate Material. J. Biomed. Mater. Res. 1998, 39, 660–666. doi:10.1002/(SICI)1097-4636(19980315)39:4<660::AID-JBM22>3.0.CO;2-9.
  • Thai, V. V.; Lee, B.-T. Fabrication of Calcium Phosphate-calcium Sulfate Injectable Bone Substitute Using Hydroxy-Propyl-Methyl-Cellulose and Citric Acid. J. Mater. Sci Mater. Med. 2010, 21, 1867–1874. doi:10.1007/s10856-010-4058-9.
  • Kah Ling Low, S. H. T.; Zein, S. H. S.; Roether, J. A.; Mouriño, V.; Boccaccini, A. R. Calcium Phosphate-based Composites as Injectable Bone Substitute Materials. J. Biomed. Mater. Res. 2010, 94B, 273–286. doi:10.1002/jbm.b.31619.
  • Fellah, B. H.; Weiss, P.; Gauthier, O.; Rouillon, T.; Pilet, P.; Daculsi, G.; Layrolle, P. Bone Repair Using a New Injectable Self-Crosslinkable Bone Substitute. J. Orthop. Res. 2006, 24, 628–635. doi:10.1002/jor.20125.
  • Khairoun, I.; Magne, D.; Gauthier, O.; Bouler, J. M.; Aguado, E.; Daculsi, G.; Weiss, P. In Vitro Characterization and in Vivo Properties of a Carbonated Apatite Bone Cement. J. Biomed. Mater. Res. 2002, 60, 633–642. doi:10.1002/jbm.10132
  • Lee, B.-T.; Youn, M.-H.; Paul, R. K.; Lee, K.-H.; Song, H.-Y. In Situ Synthesis of Spherical BCP Nanopowders by Microwave Assisted Process. Mater. Chem. Phys. 2007, 104, 249–253. doi:10.1016/j.matchemphys.2007.02.009.
  • Zhang, W.; Wang, W.; Chen, Q.-Y.; Lin, Z.-Q.; Cheng, S.-W.; Kou, D.-Q.; Ying, X.-Z.; Shen, Y.; Cheng, X.-J.; Nie, P.-F.; et al. Effect of Calcium Citrate on Bone Integration in a Rabbit Femur Defect Model. Asian Pacific J. Trop. Med. 2012, 5, 310–314. doi:10.1016/S1995-7645(12)60045-5.
  • Wang, D.-A.; Williams, C. G.; Yang, F.; Cher, N.; Lee, H.; Elisseeff, J. H. Bioresponsive Phosphoester Hydrogels for Bone Tissue Engineering. Tissue Eng. 2005, 11, 201–213. doi:10.1089/ten.2005.11.201.
  • Yamaguchi, I.; Iizuka, S.; Osaka, A.; Monma, H.; Tanaka, J. The Effect of Citric Acid Addition on Chitosan/hydroxyapatite Composites. Colloids Surf. A. Physicochem. Eng. Asp. 2003, 214, 111–118. doi:10.1016/S0927-7757(02)00365-5.
  • Djagny, K. B.; Wang, Z.; Xu, S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. doi:10.1080/20014091091904.
  • N. L. Ignjatovic´, C. Z. L.; Czernuszka, J. T.; Uskokovic, D. P. Micro- and Nano-injectable Composite Biomaterials Containing Calcium Phosphate Coated with Poly(DL-lactide-co-glycolide). Acta Biomaterialia. 2007, 3, 927–935. doi:10.1016/j.actbio.2007.04.001.
  • Yoon, S. T.; Boden, S. D. Osteoinductive Molecules in Orthopaedics: basic Science and Preclinical Studies. Clin. Orthop. Relat. Res. 2002, 395, 33–43. doi:10.1097/00003086-200202000-00005.
  • Ju Hj, M. V.; David, A. P. Bioerodible Devices for Intermittent Release of Simvastatin. Int. J. Pharm. 2007, 12, 340–346.
  • Sugiyama, M.; Kodama, T.; Konishi, K.; Abe, K.; Asami, S.; Oikawa, S. Compactin and Simvastatin, But Not Pravastatin, Induce Bone Morphogenetic Protein-2 in Human Osteosarcoma Cells. Biochem. Biophy. Res. Comm. 2000, 271, 688–692. doi:10.1006/bbrc.2000.2697.
  • Garrett, I.; Gutierrez, G.; Mundy, G. Statins and Bone Formation. CPD. 2001, 7, 715–736. doi:10.2174/1381612013397762.
  • Wong, R.; Rabie, A. Statin Collagen Grafts Used to Repair Defects in the Parietal Bone of Rabbits. British J. Oral Maxillofacial Surg. 2003, 41, 244–248. doi:10.1016/S0266-4356(03)00081-0.
  • Bao, T.-Q.; Hiep, N.-T.; Kim, Y.-H.; Yang, H.-M.; Lee, B.-T. Fabrication and Characterization of Porous Poly (Lactic-Co-Glycolic Acid)(PLGA) Microspheres for Use as a Drug Delivery System. J. Mater. Sci. 2011, 46, 2510–2517. doi:10.1007/s10853-010-5101-4.
  • Masaeli, R. Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres. IJPR. 2016, 15, 205.
  • Nath, S. D.; Son, S.; Sadiasa, A.; Min, Y. K.; Lee, B. T. Preparation and Characterization of PLGA Microspheres by the Electrospraying Method for Delivering Simvastatin for Bone Regeneration. Int. J. Pharm. 2013, 443, 87–94. doi:10.1016/j.ijpharm.2012.12.037.
  • Sadiasa, A.; Kim, M. S.; Lee, B. T. Poly (Lactide-Co-glycolide Acid)/Biphasic Calcium Phosphate Composite Coating on a Porous Scaffold to Deliver Simvastatin for Bone Tissue Engineering. J. Drug Targeting. 2013, 21, 719–729. doi:10.3109/1061186X.2013.811512.
  • Nath, S. D.; Linh, N. T. B.; Sadiasa, A.; Lee, B. T. Encapsulation of Simvastatin in PLGA Microspheres Loaded into Hydrogel Loaded BCP Porous Spongy Scaffold as a Controlled Drug Delivery System for Bone Tissue Regeneration. J. Biomater. Appl. 2014, 28, 1151–1163. doi:10.1177/0885328213499272.
  • Zhang, H.-X.; Xiao, G.-Y.; Wang, X.; Dong, Z.-G.; Ma, Z.-Y.; Li, L.; Li, Y.-H.; Pan, X.; Nie, L. Biocompatibility and Osteogenesis of Calcium Phosphate Composite Scaffolds Containing Simvastatin‐loaded PLGA Microspheres for Bone Tissue Engineering. J. Biomed. Mater. Res. 2015, 103, 3250–3258. doi:10.1002/jbm.a.35463.
  • Masaeli, R. Efficacy of the Biomaterials 3wt%-Nanostrontium-hydroxyapatite-enhanced Calcium Phosphate Cement (nanoSr-CPC) and nanoSr-CPC-incorporated Simvastatin-loaded Poly (lactic-co-glycolic-acid) Microspheres in Osteogenesis Improvement: An Explorative Multi-phase Experimental in Vitro/vivo Study. Mater. Sci. Eng. C. 2016, 69, 171–183. doi:10.1016/j.msec.2016.06.033.
  • Hiep, N. T.; Lee, B.-T. Electro-spinning of PLGA/PCL Blends for Tissue Engineering and Their Biocompatibility. J. Mater. Sci. Mater. Med. 2010, 21, 1969–1978. doi:10.1007/s10856-010-4048-y
  • Nguyen, T.-H.; Lee, B.-T. Fabrication and Characterization of Cross-linked Gelatin Electro-spun Nano-Fibers. JBiSE. 2010, 03, 1117–1124. doi:10.4236/jbise.2010.312145.
  • Short, H. L.; Fevrier, H. B.; Meisel, J. A.; Santore, M. T.; Heiss, K. F.; Wulkan, M. L.; Raval, M. V. Defining the Association between Operative Time and Outcomes in Children's Surgery. J. Pediat. Surg. 2017, 52, 1561–1566.
  • Daley, B. J.; Cecil, W.; Clarke, P. C.; Cofer, J. B.; Guillamondegui, O. D. How Slow Is Too Slow? Correlation of Operative Time to Complications: an Analysis from the Tennessee Surgical Quality Collaborative. J. Am. Coll. Surg. 2015, 220, 550–558. doi:10.1016/j.jamcollsurg.2014.12.040
  • Yokoyama, A.; Yamamoto, S.; Kawasaki, T.; Kohgo, T.; Nakasu, M. Development of Calcium Phosphate Cement Using Chitosan and Citric Acid for Bone Substitute Materials. Biomaterials. 2002, 23, 1091–1101. doi:10.1016/S0142-9612(01)00221-6.
  • Liu, H.; Li, H.; Cheng, W.; Yang, Y.; Zhu, M.; Zhou, C. Novel Injectable Calcium Phosphate/Chitosan Composites for Bone Substitute Materials. Acta Biomaterialia. 2006, 2, 557–565. doi:10.1016/j.actbio.2006.03.007.
  • H. W. Kim, J. C. K.; Kim, H. E. Hydroxyapatite Porous Scaffold Engineered with Biological Polymer Hybrid Coating for Antibiotic Vancomycin Release. J. Mater. Sci: Mater. Med. 2005, 16, 189–195. doi:10.1007/s10856-005-6679-y.
  • Khan, F. S.; Azam, S.; Raghunandan, M. E.; Clark, R. Compressive Strength of Compacted Clay-sand Mixes. Adv. Mater. Sci. Eng. 2014, 2014, 1. doi:10.1155/2014/921815.
  • Ghadami Jadval Ghadam, A.; Idrees, M. Characterization of caco3 Nanoparticles Synthesized by Reverse Microemulsion Technique in Different Concentrations of Surfactants. IJCCE. 2013, 32, 27–35.
  • Li, J.; Liu, Y.; Gao, Y.; Zhong, L.; Zou, Q.; Lai, X. Preparation and Properties of Calcium Citrate Nanosheets for Bone Graft Substitute. Bioengineered. 2016, 7, 376–381. doi:10.1080/21655979.2016.1226656.
  • Schmitt, M.; Weiss, P.; Bourges, X.; Amador del Valle, G.; Daculsi, G. Crystallization at the Polymer/calcium-phosphate Interface in a Sterilizedinjectable Bone Substitute IBS. Biomaterials. 2002, 23, 2789–2794. doi:10.1016/S0142-9612(02)00015-7.
  • Pişkin, E. In Vivo Performance of Simvastatin‐loaded Electrospun Spiral‐wound Polycaprolactone Scaffolds in Reconstruction of Cranial Bone Defects in the Rat Model. J. Biomed. Mater. Res. 2009, 90, 1137–1151. doi:10.1002/jbm.a.32157.
  • Marks, D. C.; Belov, L.; Davey, M. W.; Davey, R. A.; Kidman, A. D. The MTT Cell Viability Assay for Cytotoxicity Testing in Multidrug-resistant Human Leukemic Cells. Leukemia Res. 1992, 16, 1165–1173. doi:10.1016/0145-2126(92)90114-M.
  • Chung Yw, H. F.; Dey, C. S. Enhancement of Recombinant Human Macrophage Colony-stimulating Factor Production Using Culture Systems with Porous Polymeric Microspheres. J. Taiwan Inst. Chem. Eng. 2010, 41, 203–208.
  • Li, Y.; Chen, S.-K.; Li, L.; Qin, L.; Wang, X.-L.; Lai, Y.-X. Bone Defect Animal Models for Testing Efficacy of Bone Substitute Biomaterials. J. Orthopaedic Trans. 2015, 3, 95–104. doi:10.1016/j.jot.2015.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.