651
Views
4
CrossRef citations to date
0
Altmetric
Articles

Polyhydroxyalkanoates (PHA)-based responsive polymers

, , &
Pages 1283-1302 | Received 02 May 2021, Accepted 26 Jul 2021, Published online: 15 Aug 2021

References

  • Yu, L.; Dean, K.; Li, L. Polymer Blends and Composites from Renewable Resources. Prog. Polym. Sci. 2006, 31, 576–602. DOI: 10.1016/j.progpolymsci.2006.03.002.
  • Bhatt, R.; Shah, D.; Patel, K. C.; Trivedi, U. PHA-Rubber Blends: Synthesis, Characterization and Biodegradation. Bioresour. Technol. 2008, 99, 4615–4620. DOI: 10.1016/j.biortech.2007.06.054.
  • Chanprateep, S. Current Trends in Biodegradable Polyhydroxyalkanoates. J. Biosci. Bioeng. 2010, 110, 621–632. DOI: 10.1016/j.jbiosc.2010.07.014.
  • Shamala, T. R.; Divyashree, M. S.; Davis, R.; Kumari, K. S.; Vijayendra, S. V.; Raj, B. Production and Characterization of Bacterial Polyhydroxyalkanoate Copolymers and Evaluation of Their Blends by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Indian J. Microbiol. 2009, 49, 251–258. DOI: 10.1007/s12088-009-0031-z.
  • Ramachandran, H.; Kannusamy, S.; Huong, K.-H.; Mathava, R.; Amirul, A.-A. Blends of Polyhydroxyalkanoates (PHAs). In RSC Green Chemistry Series; Roy, I., Visakh, P. M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; pp 66–97.
  • Sun, J.; Shen, J.; Chen, S.; Cooper, M. A.; Fu, H.; Wu, D.; Yang, Z. Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers 2018, 10, 505. DOI: 10.3390/polym10050505.
  • Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y. Bio-Responsive Smart Polymers and Biomedical Applications. J. Phys. Mater. 2019, 2, 032004. DOI: 10.1088/2515-7639/ab1af5.
  • Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive Materials. Nat. Rev. Mater. 2017, 2, 16075. DOI: 10.1038/natrevmats.2016.75.
  • Rai, R.; Keshavarz, T.; Roether, J. A.; Boccaccini, A. R.; Roy, I. Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Materials for the Future. Mat. Sci. Eng. R 2011, 72, 29–47. DOI: 10.1016/j.mser.2010.11.002.
  • Kim, H. W.; Chung, M. G.; Kim, Y. B.; Rhee, Y. H. Graft Copolymerization of Glycerol 1,3-Diglycerolate Diacrylate onto Poly(3-Hydroxyoctanoate) to Improve Physical Properties and Biocompatibility. Int. J. Biol. Macromol. 2008, 43, 307–313. DOI: 10.1016/j.ijbiomac.2008.07.002.
  • Li, Z.; Yang, J.; Loh, X. J. Polyhydroxyalkanoates: Opening Doors for a Sustainable Future. NPG Asia Mater. 2016, 8, e265–e265. DOI: 10.1038/am.2016.48.
  • Hazer, B. Simple Synthesis of Amphiphilic Poly(3-Hydroxy Alkanoate)s with Pendant Hydroxyl and Carboxylic Groups via Thiol-Ene Photo Click Reactions. Polym. Degrad. Stabil. 2015, 119, 159–166. DOI: 10.1016/j.polymdegradstab.2015.04.024.
  • Halib, N.; Perrone, F.; Cemazar, M.; Dapas, B.; Farra, R.; Abrami, M.; Chiarappa, G.; Forte, G.; Zanconati, F.; Pozzato, G.; et al. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials 2017, 10, 977. DOI: 10.3390/ma10080977.
  • Li, X. T.; Zhang, Y.; Chen, G. Q. Nanofibrous Polyhydroxyalkanoate Matrices as Cell Growth Supporting Materials. Biomaterials 2008, 29, 3720–3728. DOI: 10.1016/j.biomaterials.2008.06.004.
  • Baei, M. S.; Rezvani, A. Nanocomposite (PHBHV/HA) Fabrication from Biodegradable Polymer. Middle East J. Sci. Res. 2011, 7, 46–50.
  • Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R. Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering. Biomaterials 2006, 27, 3413–3431. DOI: 10.1016/j.biomaterials.2006.01.039.
  • Misra, S. K.; Valappil, S. P.; Roy, I.; Boccaccini, A. R. Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules 2006, 7, 2249–2258. DOI: 10.1021/bm060317c.
  • Valappil, S. P.; Misra, S. K.; Boccaccini, A. R.; Roy, I. Biomedical Applications of Polyhydroxyalkanoates: An Overview of Animal Testing and In Vivo Responses. Expert Rev. Med. Dev. 2006, 3, 853–868. DOI: 10.1586/17434440.3.6.853.
  • Jing, X.; Ling, Z.; Zhenhu An, Z.; Guoqiang, C.; Yandao, G.; Nanming, Z.; Xiufang, Z. Preparation and Evaluation of Porous Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Hydroxyapatite Composite Scaffolds. J. Biomater. Appl. 2008, 22, 293–307. DOI: 10.1177/0885328207075425.
  • Kokubo, T.; Kim, H. M.; Kawashita, M. Novel Bioactive Materials with Different Mechanical Properties. Biomaterials 2003, 24, 2161–2175. DOI: 10.1016/S0142-9612(03)00044-9.
  • Karbasi, S.; Khorasani, S. N.; Ebrahimi, S.; Khalili, S.; Fekrat, F.; Sadeghi, D. Preparation and Characterization of Poly (Hydroxy Butyrate)/Chitosan Blend Scaffolds for Tissue Engineering Applications. Adv. Biomed. Res. 2016, 5, 177. DOI: 10.4103/2277-9175.188490.
  • Kausar, A. Scientific Potential of Chitosan Blending with Different Polymeric Materials: A Review. J. Plast. Film Sheeting 2017, 33, 384–412. DOI: 10.1177/8756087916679691.
  • El-Hefian, E. A.; Nasef, M. M.; Yahaya, A. H. Chitosan-Based Polymer Blends: Current Status and Applications. J. Chem. Soc. Pak. 2014, 36, 11–27.
  • Yang, Y.; El Haj, A. J. Biodegradable Scaffolds-Delivery Systems for Cell Therapies. Expert Opin. Biol. Ther. 2006, 6, 485–498. DOI: 10.1517/14712598.6.5.485.
  • Li, Y.-Y.; Wang, B.; Ma, M.-G.; Wang, B. Review of Recent Development on Preparation, Properties, and Applications of Cellulose-Based Functional Materials. Int. J. Polym. Sci. 2018, 2018, 1–18. DOI: 10.1155/2018/8973643.
  • Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842. DOI: 10.1039/C7RA11157F.
  • Liang, L.; Huang, C.; Ragauskas, A. J. Nanocellulose-Based Materials for Biomedical Applications. JSM Chem. 2017, 5, 1048–1050.
  • Yu, H. Y.; Qin, Z. Y.; Liu, Y. N.; Chen, L.; Liu, N.; Zhou, Z. Improvement of Mechanical Properties and Thermal Stability of Bacterial Polyester by Simultaneous Cellulose Nanocrystals. Carbohydr. Polym. 2012, 89, 971–978. DOI: 10.1016/j.carbpol.2012.04.053.
  • Yu, H.; y.; Qin, Z-y.; Zhou, Z. Cellulose Nanocrystals as Green Fillers to Improve Crystallization and Hydrophilic Property of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Prog. Nat. Sci. Mater. Int. 2011, 21, 478–484. DOI: 10.1016/S1002-0071(12)60086-0.
  • Ten, E.; Jiang, L.; Wolcott, M. P. Preparation and Properties of Aligned Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Cellulose Nanowhiskers Composites. Carbohydr. Polym. 2013, 92, 206–213. DOI: 10.1016/j.carbpol.2012.09.033.
  • Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. DOI: 10.1021/cr900339w.
  • Eichhorn, S. J.; Dufresne, A.; Aranguren, M.; Marcovich, N. E.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. DOI: 10.1007/s10853-009-3874-0.
  • De Menezes, A. J.; Siqueira, G.; Curvelo, A. A.; Dufresne, A. Extrusion and Characterization of Functionalized Cellulose Whiskers Reinforced Polyethylene Nanocomposites. Polymer 2009, 50, 4552–4563. DOI: 10.1016/j.polymer.2009.07.038.
  • Ajayan, P.; Stephan, O.; Colliex, C.; Trauth, D. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer resin-nanotube composite. Science 1994, 265, 1212–1214. DOI: 10.1126/science.265.5176.1212.
  • Terrones, M. Science and Technology of the Twenty-First Century: synthesis, Properties, and Applications of Carbon Nanotubes. Annu. Rev. Mater. Res. 2003, 33, 419–501. DOI: 10.1146/annurev.matsci.33.012802.100255.
  • Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer Nanocomposite Foams. Compos. Sci. Technol. 2005, 65, 2344–2363. DOI: 10.1016/j.compscitech.2005.06.016.
  • Valentini, L.; Fabbri, P.; Messori, M.; Degli Esposti, M.; Bittolo Bon, S. Multilayer Films Composed of Conductive Poly (3‐Hydroxybutyrate)/Carbon Nanotubes Bionanocomposites and a Photoresponsive Conducting Polymer. J. Polym. Sci. B: Polym. Phys. 2014, 52, 596–602. DOI: 10.1002/polb.23459.
  • Vallejo-Giraldo, C.; Pugliese, E.; Larranaga, A.; Fernandez-Yague, M. A.; Britton, J. J.; Trotier, A.; Tadayyon, G.; Kelly, A.; Rago, I.; Sarasua, J. R.; et al. Polyhydroxyalkanoate/Carbon Nanotube Nanocomposites: Flexible Electrically Conducting Elastomers for Neural Applications. Nanomedicine 2016, 11, 2547–2563. DOI: 10.2217/nnm-2016-0075.
  • Yu, H. Y.; Yao, J. M.; Qin, Z. Y.; Liu, L.; Yang, X. G. C. o. Covalent and Noncovalent Interactions of Carbon Nanotubes on the Crystallization Behavior and Thermal Properties of Poly (3‐Hydroxybutyrate‐co‐3‐Hydroxyvalerate). J. Appl. Polym. Sci. 2013, 130, 4299–4307. DOI: 10.1002/app.39529.
  • Yu, H.-Y.; Qin, Z.-Y.; Sun, B.; Yang, X.-G.; Yao, J.-M. Reinforcement of Transparent Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Incorporation of Functionalized Carbon Nanotubes as a Novel Bionanocomposite for Food Packaging. Compos. Sci. Technol. 2014, 94, 96–104. DOI: 10.1016/j.compscitech.2014.01.018.
  • Xu, C.; Qiu, Z. Nonisothermal Melt Crystallization and Subsequent Melting Behavior of Biodegradable Poly (Hydroxybutyrate)/Multiwalled Carbon Nanotubes Nanocomposites. J. Polym. Sci. B Polym. Phys. 2009, 47, 2238–2246. DOI: 10.1002/polb.21821.
  • Vidhate, S.; Innocentini-Mei, L.; D'Souza, N. A. Mechanical and Electrical Multifunctional Poly (3‐Hydroxybutyrate‐co‐3‐Hydroxyvalerate)—Multiwall Carbon Nanotube Nanocomposites. Polym. Eng. Sci. 2012, 52, 1367–1374. DOI: 10.1002/pen.23084.
  • Shan, G.-F.; Gong, X.; Chen, W.-P.; Chen, L.; Zhu, M.-F. Effect of Multi-Walled Carbon Nanotubes on Crystallization Behavior of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate). Colloid Polym. Sci. 2011, 289, 1005–1014. DOI: 10.1007/s00396-011-2412-1.
  • Phan, D. C.; Goodwin, D. G.; Jr.; Frank, B. P.; Bouwer, E. J.; Fairbrother, D. H. Biodegradability of Carbon Nanotube/Polymer Nanocomposites under Aerobic Mixed Culture Conditions. Sci. Total Environ. 2018, 639, 804–814. DOI: 10.1016/j.scitotenv.2018.05.137.
  • Lai, M.; Li, J.; Yang, J.; Liu, J.; Tong, X.; Cheng, H. The Morphology and Thermal Properties of Multi‐Walled Carbon Nanotube and Poly (Hydroxybutyrate‐co‐Hydroxyvalerate) Composite. Polym. Int. 2004, 53, 1479–1484. DOI: 10.1002/pi.1566.
  • Zhang, L.; Petersen, E. J.; Habteselassie, M. Y.; Mao, L.; Huang, Q. Degradation of Multiwall Carbon Nanotubes by Bacteria. Environ. Pollut. 2013, 181, 335–339. DOI: 10.1016/j.envpol.2013.05.058.
  • Parks, A. N.; Chandler, G. T.; Ho, K. T.; Burgess, R. M.; Ferguson, P. L. Environmental Biodegradability of [14C] Single‐Walled Carbon Nanotubes by Trametes Versicolor and Natural Microbial Cultures Found in New Bedford Harbor Sediment and Aerated Wastewater Treatment Plant Sludge. Environ. Toxicol. Chem. 2015, 34, 247–251. DOI: 10.1002/etc.2791.
  • Chen, M.; Qin, X.; Zeng, G. Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. Trends Biotechnol. 2017, 35, 836–846. DOI: 10.1016/j.tibtech.2016.12.001.
  • Dong, H.; Dong, H.; Wang, H-D.; Cao, S-G.; Shen, J-C. Lipase-Catalyzed Polymerization of Lactones and Linear Hydroxyesters. Biotechnol. Lett. 1998, 20, 905–908. DOI: 10.1023/A:1005441707356.
  • Kumar, A.; Gross, R. A. Candida a Ntartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. Biomacromolecules 2000, 1, 133–138. DOI: 10.1021/bm990510p.
  • Casas, J.; Persson, P. V.; Iversen, T.; Córdova, A. Direct Organocatalytic Ring‐Opening Polymerizations of Lactones. Adv. Synth. Catal. 2004, 346, 1087–1089. DOI: 10.1002/adsc.200404082.
  • Kobayashi, S. Enzymatic Polymerization: A New Method of Polymer Synthesis. J. Polym. Sci. A Polym. Chem. 1999, 37, 3041–3056. DOI: 10.1002/(SICI)1099-0518(19990815)37:16 < 3041::AID-POLA1>3.0.CO;2-V.
  • Kobayashi, S. Lipase-Catalyzed Polyester Synthesis-A Green Polymer Chemistry. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 338–365. DOI: 10.2183/pjab.86.338.
  • Kobayashi, S.; Uyama, H.; Namekawa, S.; Hayakawa, H. Enzymatic Ring-Opening Polymerization and Copolymerization of 8-Octanolide by Lipase Catalyst. Macromolecules 1998, 31, 5655–5659. DOI: 10.1021/ma980396n.
  • Kobayashi, S.; Uyama, H.; Ohmae, M. Enzymatic Polymerization for Precision Polymer Synthesis. BCSJ 2001, 74, 613–635. DOI: 10.1246/bcsj.74.613.
  • Namekawa, S.; Uyama, H.; Kobayashi, S. Enzymatic Synthesis of Polyesters from Lactones, Dicarboxylic Acid Divinyl Esters, and Glycols through Combination of Ring-Opening Polymerization and Polycondensation. Biomacromolecules 2000, 1, 335–338. DOI: 10.1021/bm000030u.
  • Persson, P. V.; Schröder, J.; Wickholm, K.; Hedenström, E.; Iversen, T. Selective Organocatalytic Ring-Opening Polymerization: A Versatile Route to Carbohydrate-Functionalized Poly (ε-Caprolactones). Macromolecules 2004, 37, 5889–5893. DOI: 10.1021/ma049562j.
  • Piao, L.; Deng, M.; Chen, X.; Jiang, L.; Jing, X. Ring-Opening Polymerization of ε-Caprolactone and l-Lactide Using Organic Amino Calcium Catalyst. Polymer 2003, 44, 2331–2336. DOI: 10.1016/S0032-3861(03)00118-6.
  • Shueh, M.-L.; Wang, Y.-S.; Huang, B.-H.; Kuo, C.-Y.; Lin, C.-C. Reactions of 2, 2 ‘-Methylenebis (4-Chloro-6-Isopropyl-3-Methylphenol) and 2, 2 ‘-Ethylidenebis (4, 6-di-Tert-Butylphenol) with Mg n Bu2: Efficient Catalysts for Ring-Opening Polymerization of ε-Caprolactone and l-Lactide. Macromolecules 2004, 37, 5155–5162. DOI: 10.1021/ma049778l.
  • Wang, Y.; Kunioka, M. Ring‐Opening Polymerization of Cyclic Monomers with Aluminum Triflate; Wiley Online Library: Hoboken. NJ, 2005.
  • Zhong, Z.; Dijkstra, P. J.; Birg, C.; Westerhausen, M.; Feijen, J. A Novel and Versatile Calcium-Based Initiator System for the Ring-Opening Polymerization of Cyclic Esters. Macromolecules 2001, 34, 3863–3868. DOI: 10.1021/ma0019510.
  • Okada, M. Chemical Syntheses of Biodegradable Polymers. Prog. Polym. Sci. 2002, 27, 87–133. DOI: 10.1016/S0079-6700(01)00039-9.
  • Hayashi, T. Biodegradable Polymers for Biomedical Uses. Prog. Polym. Sci. 1994, 19, 663–702. DOI: 10.1016/0079-6700(94)90030-2.
  • Van de Velde, K.; Kiekens, P. Biopolymers: Overview of Several Properties and Consequences on Their Applications. Polym. Test 2002, 21, 433–442. DOI: 10.1016/S0142-9418(01)00107-6.
  • Ikada, Y.; Tsuji, H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000, 21, 117–132. DOI: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X.
  • Lam, C. X.; Teoh, S. H.; Hutmacher, D. W. Comparison of the Degradation of Polycaprolactone and Polycaprolactone–(β‐Tricalcium Phosphate) Scaffolds in Alkaline Medium. Polym. Int. 2007, 56, 718–728. DOI: 10.1002/pi.2195.
  • Coulembier, O.; Degée, P.; Hedrick, J. L.; Dubois, P. From Controlled Ring-Opening Polymerization to Biodegradable Aliphatic Polyester: Especially Poly (β-Malic Acid) Derivatives. Prog. Polym. Sci. 2006, 31, 723–747. DOI: 10.1016/j.progpolymsci.2006.08.004.
  • Sinha, V.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-Epsilon-Caprolactone Microspheres and Nanospheres: An Overview. Int. J. Pharm. 2004, 278, 1–23. DOI: 10.1016/j.ijpharm.2004.01.044.
  • Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38, 3484–3504. DOI: 10.1039/b820162p.
  • Avella, M.; Martuscelli, E.; Raimo, M. Review Properties of Blends and Composites Based on Poly (3-Hydroxy) Butyrate (PHB) and Poly (3-Hydroxybutyrate-Hydroxyvalerate) (PHBV) Copolymers. J. Mater. Sci. 2000, 35, 523–545. DOI: 10.1023/A:1004740522751.
  • Gassner, F.; Owen, A. Physical Properties of Poly (β-Hydroxybutyrate)-Poly (ε-Caprolactone) Blends. Polymer 1994, 35, 2233–2236. DOI: 10.1016/0032-3861(94)90258-5.
  • Jenkins, M.; Cao, Y.; Howell, L.; Leeke, G. Miscibility in Blends of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Poly (ɛ-Caprolactone) Induced by Melt Blending in the Presence of Supercritical CO2. Polymer 2007, 48, 6304–6310. DOI: 10.1016/j.polymer.2007.08.033.
  • Kumagai, Y.; Doi, Y. Enzymatic Degradation and Morphologies of Binary Blends of Microbial Poly (3-Hydroxy Butyrate) with Poly (ε-Caprolactone), Poly (1, 4-Butylene Adipate and Poly (Vinyl Acetate). Polym. Degrad. Stabil. 1992, 36, 241–248. DOI: 10.1016/0141-3910(92)90062-A.
  • Lovera, D.; Márquez, L.; Balsamo, V.; Taddei, A.; Castelli, C.; Müller, A. J. Crystallization, Morphology, and Enzymatic Degradation of Polyhydroxybutyrate/Polycaprolactone (PHB/PCL) Blends. Macromol. Chem. Phys. 2007, 208, 924–937. DOI: 10.1002/macp.200700011.
  • Garcia-Garcia, D.; Rayón, E.; Carbonell-Verdu, A.; López-Martínez, J.; Balart, R. Improvement of the Compatibility between Poly (3-Hydroxybutyrate) and Poly (ε-Caprolactone) by Reactive Extrusion with Dicumyl Peroxide. Eur. Polym. J. 2017, 86, 41–57. DOI: 10.1016/j.eurpolymj.2016.11.018.
  • Przybysz, M.; Marć, M.; Klein, M.; Saeb, M. R.; Formela, K. Structural, Mechanical and Thermal Behavior Assessments of PCL/PHB Blends Reactively Compatibilized with Organic Peroxides. Polym. Test 2018, 67, 513–521. DOI: 10.1016/j.polymertesting.2018.03.014.
  • Gumel, A. M.; Razaif-Mazinah, M. R.; Anis, S. N.; Annuar, M. S. Poly (3-Hydroxyalkanoates)-co-(6-Hydroxyhexanoate) Hydrogel Promotes Angiogenesis and Collagen Deposition during Cutaneous Wound Healing in Rats. Biomed. Mater. 2015, 10, 045001. DOI: 10.1088/1748-6041/10/4/045001.
  • Gumel, A. M.; Annuar, M. S. M. Poly-3-Hydroxyalkanoates-co-Polyethylene Glycol Methacrylate Copolymers for pH Responsive and Shape Memory Hydrogel. J. Appl. Polym. Sci. 2014, 131, 41149. DOI: 10.1002/app.41149.
  • Södergård, A.; Stolt, M. Properties of Lactic Acid Based Polymers and Their Correlation with Composition. Prog. Polym. Sci. 2002, 27, 1123–1163. DOI: 10.1016/S0079-6700(02)00012-6.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. DOI: 10.1002/mabi.200400043.
  • Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliver. Rev. 2016, 107, 367–392. DOI: 10.1016/j.addr.2016.06.012.
  • Abdelwahab, M. A.; Flynn, A.; Chiou, B.-S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, Mechanical and Morphological Characterization of Plasticized PLA–PHB Blends. Polym. Degrad. Stabil. 2012, 97, 1822–1828. DOI: 10.1016/j.polymdegradstab.2012.05.036.
  • Armentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jimenez, A.; Yoon, K.; Ahn, J.; Kang, S.; Kenny, J. M. Processing and Characterization of Plasticized PLA/PHB Blends for Biodegradable Multiphase Systems. Express Polym. Lett. 2015, 9, 583–596. DOI: 10.3144/expresspolymlett.2015.55.
  • Bian, Y.; Han, C.; Han, L.; Lin, H.; Zhang, H.; Bian, J.; Dong, L. Toughening Mechanism behind Intriguing Stress–Strain Curves in Tensile Tests of Highly Enhanced Compatibilization of Biodegradable Poly (Lactic Acid)/Poly (3-Hydroxybutyrate-co-4-Hydroxybutyrate) Blends. RSC Adv. 2014, 4, 41722–41733. DOI: 10.1039/C4RA06199C.
  • Han, L.; Han, C.; Zhang, H.; Chen, S.; Dong, L. Morphology and Properties of Biodegradable and Biosourced Polylactide Blends with Poly (3‐Hydroxybutyrate‐co‐4‐Hydroxybutyrate). Polym. Compos. 2012, 33, 850–859. DOI: 10.1002/pc.22213.
  • Koyama, N.; Doi, Y. Miscibility of Binary Blends of Poly [(R)-3-Hydroxybutyric Acid] and Poly [(S)-Lactic Acid]. Polymer 1997, 38, 1589–1593. DOI: 10.1016/S0032-3861(96)00685-4.
  • Ohkoshi, I.; Abe, H.; Doi, Y. Miscibility and Solid-State Structures for Blends of Poly [(S)-Lactide] with Atactic Poly [(R, S)-3-Hydroxybutyrate]. Polymer 2000, 41, 5985–5992. DOI: 10.1016/S0032-3861(99)00781-8.
  • Zembouai, I.; Bruzaud, S.; Kaci, M.; Benhamida, A.; Corre, Y.-M.; Grohens, Y.; Taguet, A.; Lopez-Cuesta, J.-M. Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Polylactide Blends: Thermal Stability, Flammability and Thermo-Mechanical Behavior. J. Polym. Environ. 2014, 22, 131–139. DOI: 10.1007/s10924-013-0626-7.
  • Zembouai, I.; Kaci, M.; Bruzaud, S.; Benhamida, A.; Corre, Y.-M.; Grohens, Y. A Study of Morphological, Thermal, Rheological and Barrier Properties of Poly (3-hydroxybutyrate-Co-3-Hydroxyvalerate)/Polylactide Blends Prepared by Melt Mixing. Polym. Test 2013, 32, 842–851. DOI: 10.1016/j.polymertesting.2013.04.004.
  • Zhang, J.; Sato, H.; Furukawa, T.; Tsuji, H.; Noda, I.; Ozaki, Y. Crystallization Behaviors of Poly(3-Hydroxybutyrate) and Poly(l-Lactic Acid) in Their Immiscible and Miscible Blends. J. Phys. Chem. B. 2006, 110, 24463–24471. DOI: 10.1021/jp065233c.
  • Zhang, L.; Xiong, C.; Deng, X. Miscibility, Crystallization and Morphology of Poly (β-Hydroxybutyrate)/Poly (d, l-Lactide) Blends. Polymer 1996, 37, 235–241. DOI: 10.1016/0032-3861(96)81093-7.
  • Zhang, M.; Thomas, N. L. Blending Polylactic Acid with Polyhydroxybutyrate: The Effect on Thermal, Mechanical, and Biodegradation Properties. Adv. Polym. Technol. 2011, 30, 67–79. DOI: 10.1002/adv.20235.
  • Blümm, E.; Owen, A. Miscibility, Crystallization and Melting of Poly (3-Hydroxybutyrate)/Poly (L-Lactide) Blends. Polymer 1995, 36, 4077–4081. DOI: 10.1016/0032-3861(95)90987-D.
  • Gérard, T.; Budtova, T.; Podshivalov, A.; Bronnikov, S. Polylactide/Poly (Hydroxybutyrate-co-Hydroxyvalerate) Blends: Morphology and Mechanical Properties. Express Polym. Lett. 2014, 8, 609–617. DOI: 10.3144/expresspolymlett.2014.64.
  • Burgos, N.; Armentano, I.; Fortunati, E.; Dominici, F.; Luzi, F.; Fiori, S.; Cristofaro, F.; Visai, L.; Jiménez, A.; Kenny, J. M. Functional Properties of Plasticized Bio-Based Poly (Lactic Acid) _Poly (Hydroxybutyrate)(PLA_PHB) Films for Active Food Packaging. Food Bioprocess Technol. 2017, 10, 770–780. DOI: 10.1007/s11947-016-1846-3.
  • Arrieta, M. P.; Castro-López, M. d M.; Rayón, E.; Barral-Losada, L. F.; López-Vilariño, J. M.; López, J.; González-Rodríguez, M. V. Plasticized Poly(Lactic Acid)-Poly(Hydroxybutyrate) (PLA-PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. J. Agric. Food Chem. 2014, 62, 10170–10180. DOI: 10.1021/jf5029812.
  • Gumel, A. M.; Aris, M. H.; Annuar, M. S. M. Modification of Polyhydroxyalkanoates (PHAs). In RSC Green Chemistry Series; Roy, I., Visakh, P. M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; pp 141–182.
  • Mohammadi, M.; Ghaffari-Moghaddam, M. Recovery and Extraction of Polyhydroxyalkanoate (PHAs). In RSC Green Chemistry Series; Roy, I., Visakh, P. M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; pp 47–65.
  • Lao, H. K.; Renard, E.; Linossier, I.; Langlois, V.; Vallee-Rehel, K. Modification of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Film by Chemical Graft Copolymerization. Biomacromolecules 2007, 8, 416–423. DOI: 10.1021/bm0609700.
  • Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X. Well-Defined Graft Copolymers: From Controlled Synthesis to Multipurpose Applications. Chem. Soc. Rev. 2011, 40, 1282–1295. DOI: 10.1039/b921358a.
  • Ansari, N. F.; Annuar, M. S. M. Functionalization of Medium-Chain-Length Poly(3-Hydroxyalkanoates) as Amphiphilic Material by Graft Copolymerization with Glycerol 1,3-Diglycerolate Diacrylate and Its Mechanism. J. Macromol. Sci. A 2018, 55, 66–74. DOI: 10.1080/10601325.2017.1387490.
  • Nguyen, S. Graft Copolymers Containing Poly(3-Hydroxyalkanoates) — A Review on Their Synthesis, Properties, and Applications. Can. J. Chem. 2008, 86, 570–578. DOI: 10.1139/v08-044.
  • Wang, W.; Zhang, Y.; Chen, Y. M. Graft Copolymerization of N-Vinylpyrrolidone onto Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Homogeneous Solution. Iran. Polym. J. 2007, 16, 195–205.
  • Ilter, S.; Hazer, B.; Borcakli, M.; Atici, O. Graft Copolymerisation of Methyl Methacrylate onto a Bacterial Polyester Containing Unsaturated Side Chains. Macromol. Chem. Phys. 2001, 202, 2281–2286. DOI: 10.1002/1521-3935(20010701)202:11<2281::AID-MACP2281>3.0.CO;2-9.
  • Lee, H. S.; Lee, T. Y. Graft Polymerization of Acrylamide onto Poly(Hydroxybutyrate-co-Hydroxy- Valerate) Films. Polymer 1997, 38, 4505–4511. DOI: 10.1016/S0032-3861(96)01050-6.
  • Mohamed, S. M. D. S.; Ishak, K. A.; Annuar, M. S. M.; Velayutham, T. S. Synthesis and Characterization of Methyl Acrylate-Copolymerized Medium-Chain-Length Poly-3-Hydroxyalkanoates. J. Polym. Environ. 2021, 29, 3004–3014. DOI: 10.1007/s10924-021-02095-5.
  • Stille, J. K. Step-Growth Polymerization. J. Chem. Educ. 1981, 58, 862. DOI: 10.1021/ed058p862.
  • Jenkins, D. W.; Hudson, S. M. Review of Vinyl Graft Copolymerization Featuring Recent Advances toward Controlled Radical-Based Reactions and Illustrated with Chitin/Chitosan Trunk Polymers. Chem. Rev. 2001, 101, 3245–3274. DOI: 10.1021/cr000257f.
  • Barner-Kowollik, C.; Vana, P.; Davis, T. P. The Kinetics of Free-Radical Polymerization. In Handbook of Radical Polymerization; Matyjaszewski, K., Davis, T. P., Eds.; John Wiley & Sons: Canada, 2003; pp 187–261
  • Çelik, M. Graft Copolymerization of Methacrylamide onto Acrylic Fibers Initiated by Benzoyl Peroxide. J. Appl. Polym. Sci. 2004, 94, 1519–1525. DOI: 10.1002/app.21073.
  • Jiao, S.; Jiang, J.; Yu, D. The Mechanism of the Copolymerization of BF3-Complexed Ethyl Acrylate with Propylene. Chin. J. Polym. Sci. 1985, 3, 157–169.
  • Guo, F.; Guo, Z. Inspired Smart Materials with External Stimuli Responsive Wettability: A Review. RSC Adv. 2016, 6, 36623–36641. DOI: 10.1039/C6RA04079A.
  • Chung, M. G.; Kim, H. W.; Kim, B. R.; Kim, Y. B.; Rhee, Y. H. Biocompatibility and Antimicrobial Activity of Poly(3-Hydroxyoctanoate) Grafted with Vinylimidazole. Int. J. Biol. Macromol. 2012, 50, 310–316. DOI: 10.1016/j.ijbiomac.2011.12.007.
  • Nguyen, S.; Marchessault, R. H. Synthesis and Properties of Graft Copolymers Based on Poly(3-Hydroxybutyrate) Macromonomers. Macromol. Biosci. 2004, 4, 262–268. DOI: 10.1002/mabi.200300088.
  • Elsawy, M. A.; Saad, G. R.; Elsabee, M. Z. Grafting of N-Isopropyl Acrylamide onto Bacterial Polyhydroxybutrate/Hydroxyvalerate Copolymers. Polym. Plast. Technol. Eng. 2011, 50, 1055–1063. DOI: 10.1080/03602559.2011.557825.
  • Xu, P.; Zeng, Q.; Cao, Y.; Ma, P.; Dong, W.; Chen, M. Interfacial Modification on Polyhydroxyalkanoates/Starch Blend by Grafting In-Situ. Carbohydr. Polym. 2017, 174, 716–722. DOI: 10.1016/j.carbpol.2017.06.048.
  • Lao, H.-K.; Renard, E.; Langlois, V.; Vallée-Rehel, K.; Linossier, I. Surface Functionalization of PHBV by HEMA Grafting via UV Treatment: Comparison with Thermal Free Radical Polymerization. J. Appl. Polym. Sci. 2010, 116, 288–297. DOI: 10.1002/app.31507.
  • González, M.; Ortíz, P.; Rapado, M.; Galego, N. Effect of Solvents on Gamma Radiation–Induced Graft Copolymerization of Vinyl Acetate onto Poly(3-Hydroxybutyrate). Int. J. Polym. Anal. Ch. 2009, 14, 231–245. DOI: 10.1080/10236660802663480.
  • Santos, B.; Rozsa, C.; Galego, N.; Michels, A. F.; Behar, M.; Zawislak, F. C. Hydrophilic Transformations in Polyhydroxyalkanoates. Int. J. Polym. Anal. Ch. 2011, 16, 431–441. DOI: 10.1080/1023666X.2011.598269.
  • Torres, M. G.; Talavera, J. R. R.; Muñoz, S. V.; Carreón-Castro, M. d P.; Muñoz, E. M. R.; Padrón, G. H.; Guerrero, F. Q. Crystalline and Spectroscopic Characterization of Poly(2-Aminoethyl Methacrylate Hydrochloride) Chains Grafted onto Poly[(R)-3-Hydroxybutyric Acid. Vib. Spectrosc. 2015, 76, 55–62. ]. DOI: 10.1016/j.vibspec.2014.12.003.
  • Zhang, J.; Kasuya, K.; Takemura, A.; Isogai, A.; Iwata, T. Properties and Enzymatic Degradation of Poly(Acrylic Acid) Grafted Polyhydroxyalkanoate Films by Plasma-Initiated Polymerization. Polym. Degrad. Stabil. 2013, 98, 1458–1464. DOI: 10.1016/j.polymdegradstab.2013.04.010.
  • Ke, Y.; Wang, Y.; Ren, L.; Lu, L.; Wu, G.; Chen, X.; Chen, J. Photografting Polymerization of Polyacrylamide on PHBV Films (I). J. Appl. Polym. Sci. 2007, 104, 4088–4095. DOI: 10.1002/app.25678.
  • Kim, H. W.; Chung, C. W.; Rhee, Y. H. UV-Induced Graft Copolymerization of Monoacrylate-Poly(Ethylene Glycol) onto Poly(3-Hydroxyoctanoate) to Reduce Protein Adsorption and Platelet Adhesion. Int. J. Biol. Macromol. 2005, 35, 47–53. DOI: 10.1016/j.ijbiomac.2004.11.007.
  • Versace, D.-L.; Dubot, P.; Cenedese, P.; Lalevée, J.; Soppera, O.; Malval, J.-P.; Renard, E.; Langlois, V. Natural Biopolymer Surface of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)-Photoinduced Modification with Triarylsulfonium Salts. Green Chem. 2012, 14, 788–798. DOI: 10.1039/c2gc16399c.
  • Macit, H.; Hazer, B.; Arslan, H.; Noda, I. The Synthesis of PHA-g-(PTHF-b-PMMA) Multiblock/Graft Copolymers by Combination of Cationic and Radical Polymerization. J. Appl. Polym. Sci. 2009, 111, 2308–2317. DOI: 10.1002/app.29254.
  • Huerta-Angeles, G.; Brandejsova, M.; Nigmatullin, R.; Kopecka, K.; Vagnerova, H.; Smejkalova, D.; Roy, I.; Velebny, V. Synthesis of Graft Copolymers Based on Hyaluronan and Poly(3-Hydroxyalkanoates). Carbohydr. Polym. 2017, 171, 220–228. DOI: 10.1016/j.carbpol.2017.05.011.
  • Renard, E.; Tanguy, P.-Y.; Samain, E.; Guerin, P. Synthesis of Novel Graft Polyhydroxyalkanoates. Macromol. Symp. 2003, 197, 11–18. DOI: 10.1002/masy.200350702.
  • Renard, E.; Ternat, C.; Langlois, V.; Guerin, P. Synthesis of Graft Bacterial Polyesters for Nanoparticles Preparation. Macromol. Biosci. 2003, 3, 248–252. DOI: 10.1002/mabi.200390033.
  • Renard, E.; Vergnol, G.; Langlois, V. and Proliferation of Human Bladder RT112 Cells on Functionalized Polyesters. IRBM 2011, 32, 214–220. DOI: 10.1016/j.irbm.2010.12.001.
  • Iqbal, H. M. N.; Kyazze, G.; Tron, T.; Keshavarz, T. “One-Pot” Synthesis and Characterisation of Novel P(3HB)–Ethyl Cellulose Based Graft Composites through Lipase Catalysed Esterification. Polym. Chem. 2014, 5, 7004–7012. DOI: 10.1039/C4PY00857J.
  • Bhatia, S. K.; Wadhwa, P.; Hong, J. W.; Hong, Y. G.; Jeon, J. M.; Lee, E. S.; Yang, Y. H. Lipase Mediated Functionalization of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Ascorbic Acid into an Antioxidant Active Biomaterial. Int. J. Biol. Macromol. 2019, 123, 117–123. DOI: 10.1016/j.ijbiomac.2018.11.052.
  • Gumel, A. M.; Annuar, S. M.; Heidelberg, T. Single-Step Lipase-Catalyzed Functionalization of Medium-Chain-Length Polyhydroxyalkanoates. J. Chem. Technol. Biotechnol. 2013, 88, 1328–1335. DOI: 10.1002/jctb.3980.
  • Gumel, A. M.; Annuar, M. S.; Heidelberg, T. Enzymatic Synthesis of 6-O-Glucosyl-Poly(3-Hydroxyalkanoate) in Organic Solvents and Their Binary Mixture. Int. J. Biol. Macromol. 2013, 55, 127–136. DOI: 10.1016/j.ijbiomac.2012.12.028.
  • Guzmán, D.; Kirsebom, H.; Solano, C.; Quillaguamán, J.; Hatti-Kaul, R. Preparation of Hydrophilic Poly(3-Hydroxybutyrate) Macroporous Scaffolds through Enzyme-Mediated Modifications. J. Bioact. Compat. Polym. 2011, 26, 452–463. DOI: 10.1177/0883911511419970.
  • Levine, A. C.; Heberlig, G. W.; Nomura, C. T. Use of Thiol-Ene Click Chemistry to Modify Mechanical and Thermal Properties of Polyhydroxyalkanoates (PHAs). Int. J. Biol. Macromol. 2016, 83, 358–365. DOI: 10.1016/j.ijbiomac.2015.11.048.
  • Levine, A. C.; Sparano, A.; Twigg, F. F.; Numata, K.; Nomura, C. T. Influence of Cross-Linking on the Physical Properties and Cytotoxicity of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2015, 1, 567–576. DOI: 10.1021/acsbiomaterials.5b00052.
  • Yao, H.; Wei, D.; Che, X.; Cai, L.; Tao, L.; Liu, L.; Wu, L.; Chen, G.-Q. Comb-like Temperature-Responsive Polyhydroxyalkanoate-Graft-Poly(2-Dimethylamino-Ethylmethacrylate) for Controllable Protein Adsorption. Polym. Chem. 2016, 7, 5957–5965. DOI: 10.1039/C6PY01235C.
  • Ma, Y. M.; Wei, D. X.; Yao, H.; Wu, L. P.; Chen, G. Q. Synthesis, Characterization and Application of Thermoresponsive Polyhydroxyalkanoate-Graft-Poly(N-Isopropylacrylamide). Biomacromolecules 2016, 17, 2680–2690. DOI: 10.1021/acs.biomac.6b00724.
  • Tajima, K.; Iwamoto, K.; Satoh, Y.; Sakai, R.; Satoh, T.; Dairi, T. Advanced Functionalization of Polyhydroxyalkanoate via the UV-Initiated Thiol-Ene Click Reaction. Appl. Microbiol. Biotechnol. 2016, 100, 4375–4383. DOI: 10.1007/s00253-015-7252-3.
  • Lemechko, P.; Renard, E.; Guezennec, J.; Simon-Colin, C.; Langlois, V. Synthesis of Dextran-Graft-PHBHV Amphiphilic Copolymer Using Click Chemistry Approach. React. Funct. Polym. 2012, 72, 487–494. DOI: 10.1016/j.reactfunctpolym.2012.04.008.
  • Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. DOI: 10.1039/C6PY01585A.
  • Ke, Y.; Zhang, X. Y.; Ramakrishna, S.; He, L. M.; Wu, G. Reactive Blends Based on Polyhydroxyalkanoates: Preparation and Biomedical Application. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 1107–1119. DOI: 10.1016/j.msec.2016.03.114.
  • Li, Z.; Loh, X. J. Water Soluble Polyhydroxyalkanoates: Future Materials for Therapeutic Applications. Chem. Soc. Rev. 2015, 44, 2865–2879. DOI: 10.1039/c5cs00089k.
  • Vigneswari, S.; Chai, J.; Shantini, K.; Bhubalan, K.; Amirul, A. Designing Novel Interfaces via Surface Functionalization of Short-Chain-Length Polyhydroxyalkanoates. Adv. Polym. Tech. 2019, 2019, 1–15. DOI: 10.15/2019/3831251.
  • Hoffman, A. S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16. DOI: 10.1016/j.addr.2012.11.004.
  • Vigneswari, S.; Murugaiyah, V.; Kaur, G.; Khalil, H. A.; Amirul, A. Simultaneous Dual Syringe Electrospinning System Using Benign Solvent to Fabricate Nanofibrous P(3HB-co-4HB)/Collagen Peptides Construct as Potential Leave-On Wound Dressing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 66, 147–155. DOI: 10.1016/j.msec.2016.03.102.
  • Rennukka, M.; Amirul, A. Fabrication of Poly (3-Hydroxybutyrate-co-4-Hydroxybutyrate)/Chitosan Blend Material: Synergistic Effects on Physical, Chemical, Thermal and Biological Properties. Polym. Bull. 2013, 70, 1937–1957. DOI: 10.1007/s00289-012-0895-7.
  • Brigham, C. J.; Sinskey, A. J. Applications of Polyhydroxyalkanoates in the Medical Industry. Int. J. Biotechnol. Well. Ind. 2012, 1, 52–60. DOI: 10.6000/85.
  • Poltronieri, P.; Kumar, P. Polyhydroxyalkanoates (PHAs) in Industrial Applications. In Handbook of Ecomaterials; Torres-Martinez, L. M., Kharissova, O. V., Kharisov, B. I., Eds.; Springer: Cham, 2017; pp 2–30.
  • Zhao, S.; Zhu, M.; Zhang, J.; Zhang, Y.; Liu, Z.; Zhu, Y.; Zhang, C. Three Dimensionally Printed Mesoporous Bioactive Glass and Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Composite Scaffolds for Bone Regeneration. J. Mater. Chem. B. 2014, 2, 6106–6118. DOI: 10.1039/C4TB00838C.
  • Koller, M. Biodegradable and Biocompatible Polyhydroxy-Alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules 2018, 23, 362. DOI: 10.3390/molecules23020362.
  • Mathuriya, A. S.; Yakhmi, J. Polyhydroxyalkanoates Biodegradable Plastics and Their Applications. In Handbook of Ecomaterials; Torres-Martinez, L. M., Kharissova, O. V., Kharisov, B. I., Eds.; Springer: Cham, 2017; pp 1–29.
  • Kose, G. T.; Korkusuz, F.; Ozkul, A.; Soysal, Y.; Ozdemir, T.; Yildiz, C.; Hasirci, V. Tissue Engineered Cartilage on Collagen and PHBV Matrices. Biomaterials 2005, 26, 5187–5197. DOI: 10.1016/j.biomaterials.2005.01.037.
  • Chen, G. Q. A Microbial Polyhydroxyalkanoates (PHA) Based Bio- and Materials Industry. Chem. Soc. Rev. 2009, 38, 2434–2446. DOI: 10.1039/b812677c.
  • Shum-Tim, D.; Stock, U.; Hrkach, J.; Shinoka, T.; Lien, J.; Moses, M. A.; Stamp, A.; Taylor, G.; Moran, A. M.; Landis, W.; et al. Tissue Engineering of Autologous Aorta Using a New Biodegradable Polymer. Ann. Thorac. Surg. 1999, 68, 2298–2304. DOI: 10.1016/S0003-4975(99)01055-3.
  • Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-Responsive Bio-Based Polymeric Systems and Their Applications. J. Mater. Chem. B. 2019, 7, 709–729. DOI: 10.1039/C8TB02491J.
  • Kassab, A. C.; Xu, K.; Denkbas, E.; Dou, Y.; Zhao, S.; Piskin, E. Rifampicin Carrying Polyhydroxybutyrate Microspheres as a Potential Chemoembolization Agent. J. Biomater. Sci. Polym. Ed. 1997, 8, 947–961. DOI: 10.1163/156856297X00119.
  • Gurselt, I.; Yagmurlu, F.; Korkusuz, F.; Hasirci, V. In Vitro Antibiotic Release from Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Rods. J. Microencapsul. 2002, 19, 153–164. DOI: 10.1080/02652040110065413.
  • Rossi, S.; Azghani, A. O.; Omri, A. Antimicrobial Efficacy of a New Antibiotic-Loaded Poly(Hydroxybutyric-co-Hydroxyvaleric Acid) Controlled Release System. J. Antimicrob. Chemother. 2004, 54, 1013–1018. DOI: 10.1093/jac/dkh477.
  • Shishatskaya, E. I.; Goreva, A. V.; Voinova, O. N.; Inzhevatkin, E. V.; Khlebopros, R. G.; Volova, T. G. Evaluation of Antitumor Activity of Rubomycin Deposited in Absorbable Polymeric Microparticles. Bull. Exp. Biol. Med. 2008, 145, 358–361. DOI: 10.1007/s10517-008-0091-9.
  • Holmes, P. Applications of PHB-a Microbially Produced Biodegradable Thermoplastic. Phys. Technol. 1985, 16, 32–36. DOI: 10.1088/0305-4624/16/1/305.
  • Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable Polymers with a Range of Applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. DOI: 10.1002/jctb.1667.
  • Yogesh, C.; Pathak, B.; Fulekar, M. PHA—Production Application and Its Bioremediation in Environment. Res. J. Environ. Sci. 2012, 1, 46–52.
  • Volova, T. G.; Prudnikova, S. V.; Boyandin, A. N. Biodegradable Poly-3-Hydroxybutyrate as a Fertiliser Carrier. J. Sci. Food Agric. 2016, 96, 4183–4193. DOI: 10.1002/jsfa.7621.
  • Avella, M.; La Rota, G.; Martuscelli, E.; Raimo, M.; Sadocco, P.; Elegir, G.; Riva, R. Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Wheat Straw Fibre Composites: Thermal, Mechanical Properties and Biodegradation Behaviour. J. Mater Sci. 2000, 35, 829–836. DOI: 10.1023/A:1004773603516.
  • Jost, V.; Kopitzky, R. Blending of Polyhydroxybutyrate-co-Valerate with Polylactic Acid for Packaging Applications–Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chembiochemengq. 2015, 29, 221–246. DOI: 10.15255/CABEQ.2014.2257.
  • Tharanathan, R. N. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends Food Sci. Technol. 2003, 14, 71–78. DOI: 10.1016/S0924-2244(02)00280-7.
  • Diez-Pascual, A. M.; Diez-Vicente, A. L. ZnO-Reinforced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Appl. Mater. Interfaces 2014, 6, 9822–9834. DOI: 10.1021/am502261e.
  • Pandey, J. K.; Kumar, A. P.; Misra, M.; Mohanty, A. K.; Drzal, L. T.; Singh, R. P. Recent Advances in Biodegradable Nanocomposites. J. Nanosci. Nanotechnol. 2005, 5, 497–526. DOI: 10.1166/jnn.2005.111.
  • Yu, Z.; Yang, Y.; Zhang, L.; Ding, Y.; Chen, X.; Xu, K. Study on Short Glass Fiber‐Reinforced Poly (3‐Hydroxybutyrate‐co‐4‐Hydroxybutyrate) Composites. J. Appl. Polym. Sci. 2012, 126, 822–829. DOI: 10.1002/app.36958.
  • Anis, S. N. S.; Iqbal, N. M.; Kumar, S.; Amirul, A.-A. Effect of Different Recovery Strategies of P (3HB-co-3HHx) Copolymer from Cupriavidus necator Recombinant Harboring the PHA Synthase of Chromobacterium sp. USM2. Sep. Purif. Technol. 2013, 102, 111–117. DOI: 10.1016/j.seppur.2012.09.036.
  • Reddy, C. S.; Ghai, R.; Rashmi Kalia, V. C. Polyhydroxyalkanoates: An Overview. Bioresour. Technol. 2003, 87, 137–146. DOI: 10.1016/S0960-8524(02)00212-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.