179
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polymer–ceramic biocomposites based on PVP/histidine/hydroxyapatite for hard tissue engineering applications

, , , &
Pages 1380-1392 | Received 30 Jun 2021, Accepted 30 Jul 2021, Published online: 17 Aug 2021

References

  • Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L. Fabrication of Scaffolds in Tissue Engineering: A Review. Front. Mech. Eng. 2018, 13, 107–119. DOI: 10.1007/s11465-018-0496-8.
  • Kumbar, S. G.; James, R.; Nukavarapu, S. P.; Laurencin, C. T. Electrospun Nanofiber Scaffolds: engineering Soft Tissues. Biomed. Mater. 2008, 3, 034002. DOI: 10.1088/1748-6041/3/3/034002.
  • R. Seppänen-Kaijansinkko. In Tissue Engineering in Oral and Maxillofacial Surgery; Cham: Springer International Publishing, 2019; pp. 85–96.
  • Neffe, A.T.; Julich-Gruner K.K.; and Lendlein, A. Combinations of biopolymers and synthetic polymers for bone regeneration. In Biomaterials for Bone Regeneration; Elsevier, 2014; pp 87–110.
  • Alizadeh-Osgouei, M.; Li, Y.; Wen, C. A Comprehensive Review of Biodegradable Synthetic Polymer-Ceramic Composites and Their Manufacture for Biomedical Applications. Bioact. Mater. 2019, 4, 22–36. DOI: 10.1016/j.bioactmat.2018.11.003.
  • Drury, J. L.; Mooney, D. J. Hydrogels for Tissue Engineering: scaffold Design Variables and Applications. Biomaterials 2003, 24, 4337–4351. DOI: 10.1016/S0142-9612(03)00340-5.
  • Subramanian, K. G.; Vijayakumar, V. Hydrogels: Classification, Synthesis, Characterization, and Applications. In Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis, 2015, pp 3879–3892. http://dx.doi.org/10.1081/E-EBPP-120049894.
  • Dumitriu, S. Polymeric Biomaterials. New York; Basel, Marcel Dekker, 2002.
  • Makuuchi, K. Critical Review of Radiation Processing of Hydrogel and Polysaccharide. Radiat. Phys. Chem 2010, 79, 267–271. DOI: 10.1016/j.radphyschem.2009.10.011.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Witthayaprapakorn, C. Design and Preparation of Synthetic Hydrogels via Photopolymerisation for Biomedical Use as Wound Dressings. Procedia. Eng. 2011, 8, 286–291. DOI: 10.1016/j.proeng.2011.03.053.
  • Zhong, C.; Wu, J.; Reinhart-King, C. A.; Chu, C. C. Synthesis, Characterization and Cytotoxicity of Photo-crosslinked Maleic Chitosan-polyethylene Glycol Diacrylate Hybrid Hydrogels. Acta Biomater. 2010, 6, 3908–3918. DOI: 10.1016/j.actbio.2010.04.011.
  • Ravarian, R.; Moztarzadeh, F.; Hashjin, M. S.; Rabiee, S. M.; Khoshakhlagh, P.; Tahriri, M. Synthesis, Characterization and Bioactivity Investigation of Bioglass/Hydroxyapatite Composite. Ceram. Int. 2010, 36, 291–297. DOI: 10.1016/j.ceramint.2009.09.016.
  • Zhang, L. F.; Sun, R.; Xu, L.; Du, J.; Xiong, Z. C.; Chen, H. C.; Xiong, C. D. Hydrophilic Poly (Ethylene Glycol) Coating on PDLLA/BCP Bone Scaffold for Drug Delivery and Cell Culture. Mater. Sci. Eng. C. 2008, 28, 141–149. DOI: 10.1016/j.msec.2007.01.005.
  • Gaharwar, A. K.; Dammu, S. A.; Canter, J. M.; Wu, C.-J.; Schmidt, G. Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(Ethylene Glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules. 2011, 12, 1641–1650. DOI: 10.1021/bm200027z.
  • Andronescu, E.; Ficai, M.; Voicu, G.; Ficai, D.; Maganu, M.; Ficai, A. Synthesis and Characterization of Collagen/Hydroxyapatite: Magnetite Composite Material for Bone Cancer Treatment. J. Mater. Sci. Mater. Med. 2010, 21, 2237–2242. DOI: 10.1007/s10856-010-4076-7.
  • Paxton, J. Z.; Donnelly, K.; Keatch, R. P.; Baar, K. Engineering the Bone-Ligament Interface Using Polyethylene Glycol Diacrylate Incorporated with Hydroxyapatite. Tissue. Eng. Part A. 2009, 15, 1201–1209. DOI: 10.1089/ten.tea.2008.0105.
  • Liu, X.; Xu, Y.; Wu, Z.; Chen, H. Poly(N-vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromol. Biosci. 2013, 13, 147–154. DOI: 10.1002/mabi.201200269.
  • Teodorescu, M.; Bercea, M. Poly(Vinylpyrrolidone) – a Versatile Polymer for Biomedical and beyond Medical Applications. Polym. Plast. Technol. Eng. 2015, 54, 923–943. DOI: 10.1080/03602559.2014.979506.
  • Adikwu, M. U.; Esimone, C. O. An Overview of Synthetic Biopolymers in Drug Delivery. In Biopolymers  in Drug Delivery: Recent Advances and Challenges, Bentham Science Publishers, 2012; pp 122–130
  • Braverman, E. R.; Pfeiffer, C. C.; Blum, K.; Smayda, R. The Healing Nutrients Within: facts, Findings, and New Research on Amino Acids. Basic Health Publications, Inc.: Laguna Beach, 2003.
  • George, A.; Veis, A. Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition. Chem. Rev. 2008, 108, 4670–4693. DOI: 10.1021/cr0782729.
  • Rosenthal, A. K. The Role of Noncollagenous Proteins in Mineralization. Curr. Opin. Orthop. 2007, 18, 449–453. DOI: 10.1097/BCO.0b013e32825e1d84.
  • Silver, F. H.; Landis, W. J. Deposition of Apatite in Mineralizing Vertebrate Extracellular Matrices: A Model of Possible Nucleation Sites on Type I Collagen. Connect. Tissue. Res. 2011, 52, 242–254. DOI: 10.3109/03008207.2010.551567.
  • Landis, W. J.; Jacquet, R. Association of Calcium and Phosphate Ions with Collagen in the Mineralization of Vertebrate Tissues. Calcif. Tissue. Int. 2013, 93, 329–337. DOI: 10.1007/s00223-013-9725-7.
  • Aoba, T.; Fukae, M.; Tanabe, T.; Shimizu, M.; Moreno, E. C. Selective Adsorption of Porcine-Amelogenins onto Hydroxyapatite and Their Inhibitory Activity on Hydroxyapatite Growth in Supersaturated Solutions. Calcif. Tissue. Int. 1987, 41, 281–289. DOI: 10.1007/BF02555230.
  • Saroff, H. A.; Lewis, M. S. The Binding of Calcium Ions to Serum Albumin. J. Phys. Chem. 1963, 67, 1211–1216. DOI: 10.1021/j100800a011.
  • Rees, S. G.; Wassell, D. T. H.; Shellis, R. P.; Embery, G. Effect of Serum Albumin on Glycosaminoglycan Inhibition of Hydroxyapatite Formation. Biomaterials. 2004, 25, 971–977. DOI: 10.1016/s0142-9612(03)00618-5.
  • Wang, J.; Yang, G.; Wang, Y.; Du, Y.; Liu, H.; Zhu, Y.; Mao, C.; Zhang, S. Chimeric Protein Template-Induced Shape Control of Bone Mineral Nanoparticles and Its Impact on Mesenchymal Stem Cell Fate. Biomacromolecules. 2015, 16, 1987–1996. DOI: 10.1021/acs.biomac.5b00419.
  • Chauhan, N.; Singh, Y. L-Histidine Controls the Hydroxyapatite Mineralization with Plate-like Morphology: Effect of Concentration and Media. Mater. Sci. Eng C. Mater. Biol. Appl. 2021, 120, 111669. DOI: 10.1016/j.msec.2020.111669.
  • Pluta, K.; Sobczak-Kupiec, A.; Półtorak, O.; Malina, D.; Tyliszczak, B. Bioactivity Tests of Calcium Phosphates with Variant Molar Ratios of Main Components. J. Biomed. Mater. Res. A. 2018, 106, 1941–1950. DOI: 10.1002/jbm.a.36386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.