236
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Development of ketorolac tromethamine loaded biocompatible polymeric microspheres and matrix films: designing for topical application

ORCID Icon & ORCID Icon
Pages 1329-1339 | Received 27 Apr 2022, Accepted 30 Jun 2022, Published online: 12 Jul 2022

References

  • Benbow, T.; Campbell, J. Microemulsions as Transdermal Drug Delivery Systems for Nonsteroidal Anti-inflammatory Drugs (NSAIDs): A Literature Review. Drug Dev. Ind. Pharm. 2019, 45, 1849–1855. DOI: 10.1080/03639045.2019.1680996.
  • Swieboda, P.; Filip, R.; Prystupa, A.; Drozd, M. Assessment of Pain: Types, Mechanism and Treatment. Ann. Agric. Environ. Med. 2013, 20, 2–7.
  • Basbaum, A. I.; Bautista, D. M.; Scherrer, G.; Julius, D. Cellular and Molecular Mechanisms of Pain. Cell 2009, 139, 267–284. DOI: 10.1016/j.cell.2009.09.028.
  • Vane, J. R. The Fight against Rheumatism: From Willow Bark to COX-1 Sparing Drugs. J. Physiol. Pharmacol. 2000, 51, 573–586.
  • Rao, P. P. N.; Knaus, E.-E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. J. Pharm. Pharm. Sci. 2008, 11, 81s–110s. DOI: 10.18433/j3t886.
  • Patil, J.; Rajput, R.; Patil, P.; Mujumdar, A.; Naik, J. Generation of Sustained Release Chitosan Nanoparticles for Delivery of Ketorolac Tromethamine: A Tubular Microreactor Approach. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 516–524. DOI: 10.1080/00914037.2019.1581201.
  • Wagh, P.; Mujumdar, A.; Naik, J.-B. Preparation and Characterization of Ketorolac Tromethamine-Loaded Ethyl Cellulose Micro-/Nanospheres using Different Techniques. Particul. Sci. Technol. 2019, 37, 347–357. DOI: 10.1080/02726351.2017.1383330.
  • Wu, P.-C.; Chen, H.-H.; Chen, S.-Y.; Wang, W.-L.; Yang, K.-L.; Huang, C.-H.; Kao, H.-F.; Chang, J.-C.; Hsu, C.-L. L.; Wang, J.-Y.; et al. Magnetic Field Distribution Modulation of Intrathecal Delivered Ketorolac Iron-Oxide Nanoparticle Conjugates Produce Excellent Analgesia for Chronic Inflammatory Pain. J. Nanobiotechnol. 2018, 16, 1–9. DOI: 10.1186/s12951-018-0375-9.
  • Gillis, J. C.; Brogden, R.-N. Ketorolac: A Reappraisal of Its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Use in Pain Management. Drugs 1997, 53, 139–188. DOI: 10.2165/00003495-199753010-00012.
  • Joishy, S. K.; Walsh, D. The Opioid-Sparing Effects of Intravenous Ketorolac as an Adjuvant Analgesic in Cancer Pain: Application in Bone Metastases and the Opioid Bowel Syndrome. J. Pain Symptom. Manag. 1998, 16, 334–339. DOI: 10.1016/S0885-3924(98)00081-5.
  • Aguirre-Bañuelos, P.; Castañeda-Hernández, G.; López-Muñoz, F. J.; Granados-Soto, V. Effect of Coadministration of Caffeine and Either Adenosine Agonists or Cyclic Nucleotides on Ketorolac Analgesia. Eur. J. Pharmacol. 1999, 377, 175–182. DOI: 10.1016/s0014-2999(99)00404-5.
  • Baevsky, R. H.; Nyquist, S. N.; Roy, M. N.; Smithline, H. A. Antipyretic Effectiveness of Intravenous Ketorolac Tromethamine. J. Emerg. Med. 2004, 26, 407–410. DOI: 10.1016/j.jemermed.2003.12.022.
  • Kumar, D. P.; Mallick, S.; Mukherjee, B.; Sengupta, S.; Pattnaik, S.; Chakraborty, S. Optimization of In-Vitro Permeation Pattern of Ketorolac Tromethamine Transdermal Patches. Iran J. Pharm. Sci. 2011, 10, 193–201.
  • Suhail, M.; Liu, J.-Y.; Hsieh, W.-C.; Lin, Y.-W.; Usman Minhas, M.; Wu, P.-C. Designing of pH-Responsive Ketorolac Tromethamine Loaded Hydrogels of Alginic Acid: Characterization, In-Vitro and In-Vivo Evaluation. Arab. J. Chem. 2022, 15, 103590. DOI: 10.1016/j.arabjc.2021.103590.
  • Maitz, M. F. Applications of Synthetic Polymers in Clinical Medicine. Biosurf. Biotribol. 2015, 1, 161–176. DOI: 10.1016/j.bsbt.2015.08.002.
  • Borandeh, S.; Bochove, B. V.; Teotia, A.; Seppälä, J. Polymeric Drug Delivery Systems by additive manufacturing. Adv. Drug Deliv. Rev. 2021, 173, 349–373. DOI: 10.1016/j.addr.2021.03.022.
  • Rahimi, M.; Charmi, G.; Matyjaszewski, K.; Banquy, X.; Pietrasik, J. Recent Developments in Natural and Synthetic Polymeric Drug Delivery Systems Used for the Treatment of Osteoarthritis. Acta Biomater 2021, 123, 31–50. DOI: 10.1016/j.actbio.2021.01.003.
  • Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in Biomaterials for Drug Delivery. Adv. Mater. 2018, 30, 1705328. DOI: 10.1002/adma.201705328.
  • Wu, J.; Zhang, Z.; Gu, J.; Zhou, W.; Liang, X.; Zhou, G.; Han, C. C.; Xu, S.; Liu, Y. Mechanism of a Long-Term Controlled Drug Release System Based on Simple Blended Electrospun Fibers. J. Control. Release 2020, 320, 337–346. DOI: 10.1016/j.jconrel.2020.01.020.
  • Abu-Thabit, N. Y.; Makhlouf, A. S. H. Historical Development of Drug Delivery Systems: From Conventional Macroscale to Controlled, Targeted, and Responsive Nanoscale Systems. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Makhlouf, A. S. H., Abu-Thabit, N. Y., Eds.; Woodhead Publishing: Sawston, 2018; Vol. 1, pp 3–41. DOI: 10.1016/B978-0-08-101997-9.00001-1.
  • Kondolot-Solak, E.; Kaya, S.; Asman, G. Preparation, Characterization, and Antibacterial Properties of Biocompatible Material for Wound Healing. J. Macromol. Sci. A 2021, 58, 709–716. DOI: 10.1080/10601325.2021.1929315.
  • Zheng, J.; Lv, S.; Zhong, Y.; Jiang, X. Injectable Hydroxypropyl Chitin Hydrogels Embedded with Carboxymethyl Chitin Microspheres Prepared via a Solvent-Free Process for Drug Delivery. J. Biomater. Sci. Polym. Ed. 2021, 32, 1564–1583. DOI: 10.1080/09205063.2021.1926893.
  • Qu, X.; Yan, L.; Liu, S.; Tan, Y.; Xiao, J.; Cao, Y.; Chen, K.; Xiao, W.; Li, B.; Liao, X. Preparation of Silk Fibroin/Hyaluronic Acid Hydrogels with Enhanced Mechanical Performance by a Combination of Physical and Enzymatic Crosslinking. J. Biomater. Sci. Polym. Ed. 2021, 32, 1635–1653. DOI: 10.1080/09205063.2021.1932070.
  • Singh, V.; Kesharwani, P. Dendrimer as a Promising Nanocarrier for the Delivery of Doxorubicin as an Anticancer Therapeutics. J. Biomater. Sci. Polym. Ed. 2021, 32, 1882–1909. DOI: 10.1080/09205063.2021.1938859.
  • Kondolot-Solak, E.; Er, A. pH-Sensitive Interpenetrating Polymer Network Microspheres of Poly(Vinyl Alcohol) and Carboxymethyl Cellulose for Controlled Release of the Nonsteroidal Anti-Inflammatory Drug Ketorolac Tromethamine. Artif. Cells Nanomed. Biotechnol. 2016, 44, 817–824. DOI: 10.3109/21691401.2014.982805.
  • Bulut, E. Flurbiprofen-Loaded Interpenetrating Polymer Network Beads Based on Alginate, Polyvinyl Alcohol and Methylcellulose: Design, Characterization and In-Vitro Evaluation. J. Biomater. Sci. Polym. Ed. 2020, 31, 1671–1688. DOI: 10.1080/09205063.2020.1769800.
  • Hao, D.; Zhang, R.; Ge, J.; Ye, P.; Song, C.; Zhu, K.; Na, X.; Huang, Y.; Zhao, L.; Zhou, W.; et al. Rapid and High-Capacity Loading of IgG Monoclonal Antibodies by Polymer Brush and Peptides Functionalized Microspheres. J. Chromatogr. A 2021, 1640, 461948. DOI: 10.1016/j.chroma.2021.461948.
  • Farid, E. A.; Davachi, S. M.; Pezeshki-Modaress, M.; Taranejoo, S.; Seyfi, J.; Hejazi, I.; Hakim, M. T.; Najafi, F.; D’Amico, C.; Abbaspourrad, A. Preparation and Characterization of Polylactic-Co-Glycolic Acid/Insulin Nanoparticles Encapsulated in Methacrylate Coated Gelatin with Sustained Release for Specific Medical Applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 910–937. DOI: 10.1080/09205063.2020.1725863.
  • Richards, K.; Malik, D. J. Bacteriophage Encapsulation in pH-Responsive Core-Shell Capsules as an Animal Feed Additive. Viruses 2021, 13, 1131. DOI: 10.3390/v13061131.
  • Chen, S.; Singh, J. Controlled Release of Growth Hormone from Thermosensitive Triblock Copolymer Systems: In Vitro and In Vivo Evaluation. Int. J. Pharm. 2008, 52, 58–65. DOI: 10.1016/j.ijpharm.2007.10.016.
  • Vela Ramirez, J. E.; Roychoudhury, R.; Habte, H. H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B. Carbohydrate-Functionalized Nanovaccines Preserve HIV-1 Antigen Stability and Activate Antigen Presenting Cells. J. Biomater. Sci. Polym. Ed. 2014, 25, 1387–1406. DOI: 10.1080/09205063.2014.940243.
  • Simões, M. G.; Coimbra, P.; Carreira, A. S.; Figueiredo, M. M.; Gil, M. H.; Simões, P. N. Eugenol-Loaded Microspheres Incorporated into Textile Substrates. Cellulose 2020, 27, 4109–4121. DOI: 10.1007/s10570-020-03010-2.
  • Phadke, K. V.; Manjeshwar, L. S.; Aminabhavi, T. M. Microspheres of Gelatin and Poly(Ethylene Glycol) Coated with Ethyl Cellulose for Controlled Release of Metronidazole. Ind. Eng. Chem. Res. 2014, 53, 6575–6584. DOI: 10.1021/ie404052q.
  • Chen, Q.; Li, W.; Yao, Q.; Liang, R.; Pérez-Garcia, R.; Munoz, J.; Boccaccini, A. R. Multilayered Drug Delivery Coatings Composed of Daidzein-Loaded PHBV Microspheres Embedded in a Biodegradable Polymer Matrix by Electrophoretic Deposition. J. Mater. Chem. B 2016, 4, 5035–5045. DOI: 10.1039/C6TB00113K.
  • Bhaskaran, S. Poly (Lactic Acid) Microspheres of Ketorolac Tromethamine for Patenteral Controlled Drug Delivery System. Indian J. Pharm. Sci. 2001, 63, 538–540.
  • Sankar, C.; Mishra, B. Development and In Vitro Evaluations of Gelatin A Microspheres of Ketorolac Tromethamine for Intranasal Administration. Acta Pharm. 2003, 53, 101–110.
  • Bhaskaran, S.; Suresh, S. Biodegradable Microspheres of Ketorolac Tromethamine for Parenteral Administration. J. Microencapsul. 2004, 21, 743–750. DOI: 10.1080/02652040400000496.
  • Sinha, V. R.; Trehan, A. Formulation, Characterization, and Evaluation of Ketorolac Tromethamine-Loaded Biodegradable Microspheres. Drug Deliv. 2005, 12, 133–139. DOI: 10.1080/10717540590925726.
  • Rokhade, A. P.; Agnihotri, S. A.; Patil, S. A.; Mallikarjuna, N. N.; Kulkarni, P. V.; Aminabhavi, T. M. Semi-Interpenetrating Polymer Network Microspheres of Gelatin and Sodium Carboxymethyl Cellulose for Controlled Release of Ketorolac Tromethamine. Carbohydr. Polym. 2006, 65, 243–252. DOI: 10.1016/j.carbpol.2006.01.013.
  • Mathew, S. T.; Devi, S. G.; KV, S. Formulation and Evaluation of Ketorolac Tromethamine-Loaded Albumin Microspheres for Potential Intramuscular Administration. AAPS Pharm. Sci. Tech. 2007, 8, 1–14. DOI: 10.1208/pt0801014.
  • Sinha, V. R.; Trehan, A. Development, Characterization, and Evaluation of Ketorolac Tromethamine-Loaded Biodegradable Microspheres as a Depot System for Parenteral Delivery. Drug Deliv. 2008, 15, 365–372. DOI: 10.1080/10717540500398092.
  • Basu, S. K.; Kavitha, K.; Rupeshkumar, M. Evaluation of Ketorolac Tromethamine Microspheres by Chitosan/Gelatin B Complex Coacervation. Sci. Pharm. 2010, 78, 79–92. DOI: 10.3797/scipharm.0903-16.
  • Saraf, S. K.; Verma, A. K.; Tripathi, A.; Saraf, S. A. Fabrication and Evaluation of Sustained Release Microspheres of Ketorolac Tromethamine. Int. J. Pharm. Pharm. Sci. 2010, 2, 44–48.
  • Radwan, M. A.; Alquadeib, B. T.; Aloudah, N. M.; Aboul-Enein, H. Y. Pharmacokinetics of Ketorolac Loaded to Polyethylcyanoacrylate Nanoparticles using UPLC MS/MS for Its Determination in Rats. Int. J. Pharm. 2010, 397, 173–178. DOI: 10.1016/j.ijpharm.2010.06.035.
  • Nagda, C. D.; Chotai, N. P.; Nagda, D. C.; Patel, S. B.; Patel, U. L. Development and Characterization of Mucoadhesive Microspheres for Nasal Delivery of Ketorolac. Pharmazie 2011, 66, 249–257.
  • Nagda, C. D.; Chotai, N. P.; Nagda, D. C.; Patel, S. B.; Patel, U. L. Preparation and Characterization of Spray-Dried Mucoadhesive Microspheres of Ketorolac for Nasal Administration. Curr. Drug Deliv. 2012, 9, 205–218. DOI: 10.2174/156720112800234503.
  • El Rasoul, A. S.; Ahmed, M. M.; Saleh, K. I. Emulsion Solvent Evaporation Method for Preparing Eudragit RS100 Microparticles Loaded Ketorolac Tromethamine. Asian J. Pharm. Res. Health Care 2012, 2, 627–639.
  • Abou El Ela, A.; Hassan, M. A.; El-Maraghy, D. A. Ketorolac Thromethamine Floating Beads for Oral Application: Characterization and In Vitro/In Vivo Evaluation. Saudi Pharm. J. 2014, 22, 349–359. DOI: 10.1016/j.jsps.2013.06.006.
  • Shahi, P.; Kumari, N.; Pathak, K. Microspheres and Tablet in Capsule System: A Novel Chronotherapeutic System of Ketorolac Tromethamine for Site and Time Specific Delivery. Int. J. Pharm. Investig. 2015, 5, 161–170. DOI: 10.4103/2230-973X.160854.
  • Morsi, N.; Ghorab, D.; Refai, H.; Teba, H. Preparation and Evaluation of Alginate/Chitosan Nanodispersions for Ocular Delivery. Int. J. Pharm. Pharm. Sci. 2015, 7, 234–240.
  • Nadal-Nicolás, F. M.; Rodriguez-Villagra, E.; Bravo-Osuna, I.; Sobrado-Calvo, P.; Molina-Martínez, I.; Villegas-Pérez, M. P.; Vidal-Sanz, M.; Agudo-Barriuso, M.; Herrero-Vanrell, R. Ketorolac Administration Attenuates Retinal Ganglion Cell Death After Axonal Injury. Invest. Ophthalmol. Vis. Sci. 2016, 57, 1183–1192. DOI: 10.1167/iovs.15-18213.
  • Fathalla, Z. M.; Khaled, K. A.; Hussein, A. K.; Alany, R. G.; Vangala, A. Formulation and Corneal Permeation of Ketorolac Tromethamine-Loaded Chitosan Nanoparticles. Drug Dev. Ind. Pharm. 2016, 42, 514–524. DOI: 10.3109/03639045.2015.1081236.
  • Gautam, S. S.; Mishra, M. K.; Prasad, R. K. Formulation and Characterization of Ketorolac Tromethamine Nanoparticle with Eudragit RS-100 and RL-100 by Nano Precipitation Method. Int. J. Res. Pharm. Biosci. 2017, 4, 17–23.
  • Sharma, S.; Sharma, A.; Sara, U. S.; Singh, S. Chitosan Loaded Ketorolac Tromethamine Nanoparticles for Improved Ocular Delivery in Eye Inflammation Indian. J. Pharm. Educ. Res. 2018, 52, 202–209. DOI: 10.5530/ijper.52.4s.99.
  • Jadhav, P. A.; Yadav, A. V. Design, Development and Characterization of Ketorolac Tromethamine Polymeric Nanosuspension. Ther. Deliv. 2019, 10, 585–597. DOI: 10.4155/tde-2019-0045.
  • Mohammadi, G.; Mirzaeei, S.; Taghe, S.; Mohammadi, P. Preparation and Evaluation of Eudragit® L100 Nanoparticles Loaded Impregnated with KT Tromethamine Loaded PVA-HEC Insertions for Ophthalmic Drug Delivery. Adv. Pharm. Bull. 2019, 9, 593–600. DOI: 10.15171/apb.2019.068.
  • Bertens, C.; Martino, C.; van Osch, M. C.; Lataster, A.; Dias, A.; van den Biggelaar, F.; Tuinier, R.; Nuijts, R.; Gijs, M. Design of the Ocular Coil, a New Device for Non-invasive Drug Delivery. Eur. J. Pharm. Biopharm. 2020, 150, 120–130. DOI: 10.1016/j.ejpb.2020.03.010.
  • Osman, R.; Fetih, G.; Habib, F. Ketorolac Tromethamine Loaded Nanoparticles For Ocular Delivery: Formulation, In-Vitro and Ex-Vivo Evaluation. Bull. Pharm. Sci. Assiut. 2020, 43, 79–94. DOI: 10.21608/bfsa.2020.93593.
  • Jadhav, S. V.; Nikam, D. S.; Khot, V. M.; Thorat, N. D.; Phadatare, M. R.; Ningthoujam, R. S.; Salunkhe, A. B.; Pawar, S. H. Studies on Colloidal Stability of PVP-Coated LSMO Nanoparticles for Magnetic Fluid Hyperthermia. New J. Chem. 2013, 37, 3121–3130. DOI: 10.1039/c3nj00554b.
  • Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; et al. Imparting Functionality to a Metal-Organic Framework Material by Controlled Nanoparticle Encapsulation. Nat. Chem. 2012, 4, 310–316. DOI: 10.1038/nchem.1272.
  • Azad, H. Z.; Semagina, N. Bimetallic Catalysts: Requirements for Stabilizing PVP Removal Depend on the Surface Composition. Appl. Catal. A Gen. 2014, 482, 327–335. DOI: 10.1016/j.apcata.2014.06.016.
  • Graf, C.; Dembski, S.; Hofmann, A.; Rühl, E. A General Method for the Controlled Embedding of Nanoparticles in Silica Colloids. Langmuir. 2006, 22, 5604–5610. DOI: 10.1021/la060136w.
  • Xue, J.; Ngadi, M. Effects of Methylcellulose, Xanthan Gum and Carboxymethyl Cellulose on Thermal Properties of Batter Systems Formulated with Different Flour Combinations. Food Hydrocoll. 2009, 23, 286–295. DOI: 10.1016/j.foodhyd.2008.01.002.
  • Oytun-Akalın, G.; Pulat, M. Preparation and Characterization of Nanoporous Sodium Carboxymethyl Cellulose Hydrogel Beads. J. Nanomater. 2018, 8, 1–12. DOI: 10.1155/2018/9676949.
  • Li, J.; Lu, J.; Li, Y. Carboxymethylcellulose/Bentonite Composite Gels: Water Sorption Behavior and Controlled Release of Herbicide. J. Appl. Polym. Sci. 2009, 112, 261–268. DOI: 10.1002/app.29416.
  • Kim, M. S.; Park, S. J.; Gu, B. K.; Kim, C. H. Ionically Crosslinked Alginate – Carboxymethyl Cellulose Beads for the Delivery of Protein Therapeutics. Appl. Surf. Sci. 2012, 262, 28–33. DOI: 10.1016/j.apsusc.2012.01.010.
  • Pearnchob, N.; Bodmeier, R. Dry Polymer Powder Coating and Comparison with Conventional Liquid Based Coatings for Eudragit RS, Ethyl Cellulose and Shellac. Eur. J. Pharm. Biopharm. 2003, 56, 363–369. DOI: 10.1016/S0939-6411(03)00121-8.
  • Dashevsky, A.; Kolter, K.; Bodmeier, R. Compression of Pellets Coated with Various Aqueous Polymer Dispersions. Int. J. Pharm. 2004, 279, 19–26. DOI: 10.1016/j.ijpharm.2004.03.019.
  • Iqbal, Z.; Babar, A.; Ashraf, M. Controlled-Release Naproxen Using Micronized Ethyl Cellulose by Wet-Granulation and Solid Dispersion Method. Drug Dev. Ind. Pharm. 2002, 28, 129–134. DOI: 10.1081/ddc-120002445.
  • Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Gaikwad, K. K.; Kim, J.; Kumar, A.; Negi, Y. S. Nanoporous Sodium Carboxymethyl Cellulose-g-Poly (Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization. Gels 2020, 6, 49. DOI: 10.3390/gels6040049.
  • Reddy, S.; Babu, P. K.; Pratap, S.; Chandrasekhar, M.; Prasad, S. H. R.; Sudhakar, K.; Reddy, V. N.; Subha, M. C. S.; Rao, K. C. Miscibility Studies of Sodium Carboxy Methyl Cellulose/Poly (Vinyl Pyrrolidone) Blends in Dilute Solutions and Solid State. Adv. Polym. Technol. 2012, 3, 42–48.
  • Mabrouk, M.; Hammad, S. F.; Abdella, A. A.; Mansour, F. R. Chitosan-Based Molecular Imprinted Polymer for Extraction and Spectrophotometric Determination of Ketorolac in Human Plasma. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 241, 118668. DOI: 10.1016/j.saa.2020.118668.
  • Thakur, G.; Mitra, A.; Rousseau, D.; Basak, A.; Sarkar, S.; Pal, K. Crosslinking of Gelatin-Based Drug Carriers by Genipin Induces Changes in Drug Kinetic Profiles In Vitro. J. Mater. Sci. Mater. Med. 2011, 22, 115–123. DOI: 10.1007/s10856-010-4185-3.
  • Solak, E. Preparation and Characterization of IPN Microspheres for Controlled Delivery of Naproxen. JBNB 2011, 2, 445–453. DOI: 10.4236/jbnb.2011.24054.
  • Şanlı, O.; Biçer, E.; Işıklan, N. In Vitro Release Study of Diltiazem Hydrochloride from Poly(Vinyl Pyrrolidone)/Sodium Alginate Blend Microspheres. J. App. Polym. Sci. 2008, 7, 1973–1980. DOI: 10.1002/app.27168.
  • Varma, D. M.; Gold, G. T.; Taub, P. J.; Nicoll, S. B. Injectable Carboxymethylcellulose Hydrogels for Soft Tissue Filler Applications. Acta Biomater. 2014, 10, 4996–5004. DOI: 10.1016/j.actbio.2014.08.013.
  • Leach, B. J.; Bivens, K. A.; Patrick, C. W. Jr.; Schmidt, C. E. Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds. Biotechnol. Bioeng. 2003, 82, 578–589. DOI: 10.1002/bit.10605.
  • Marsano, E.; Gagliardi, S.; Ghioni, F.; Bianchi, E. Behaviour of Gels Based on (Hydroxypropyl) Cellulose Methacrylate. Polymer 2000, 41, 7691–7698. DOI: 10.1016/S0032-3861(00)00142-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.