1,117
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Linalool attenuates acquisition and reinstatement and accelerates the extinction of nicotine-induced conditioned place preference in male mice

ORCID Icon
Pages 422-432 | Received 16 Oct 2020, Accepted 01 Mar 2021, Published online: 14 Apr 2021

References

  • Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiat. 2016;3:760–73. doi:10.1016/S2215-0366(16)00104-8.
  • Ferguson TF, Beauchamp A, Rosen EM, Ray AN, Theall KP, Gilpin NW, Molina PE, Edwards S. Pilot study of the adaptation of an alcohol, tobacco, and illicit drug use intervention for vulnerable urban young adults. Front Public Health. 2020;8. doi:10.3389/fpubh.2020.00314.
  • Acion L. Methods in addiction research section: notes from the associate editor. Am J Drug Alcohol Abuse. 2017;43:491. doi:10.1080/00952990.2017.1334792.
  • Adinoff B, Carmody TJ, Walker R, Donovan DM, Brigham GS, Winhusen TM. Decision-making processes as predictors of relapse and subsequent use in stimulant-dependent patients. Am J Drug Alcohol Abuse. 2016;42:88–97. doi:10.3109/00952990.2015.1106550.
  • D’Souza MS, Markou A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract. 2011;6:4–16.
  • D’Souza MS, Markou A. The “stop” and “go” of nicotine dependence: role of GABA and glutamate. Cold Spring Harb Perspect Med. 2013;3. doi:10.1101/cshperspect.a012146.
  • Pogun S. Editorial: nicotine and the nicotinic cholinergic system in health and disease. Curr Neuropharmacol. 2018;16:336–37. doi:10.2174/1570159X1604180501124517.
  • You S, Li X, Xiong J, Zhu X, Zhangsun D, Zhu X, Luo S. α-Conotoxin TxIB: a uniquely selective ligand for α6/α3β2β3 nicotinic acetylcholine receptor attenuates nicotine-induced conditioned place preference in mice. Mar Drugs. 2019;17:490. doi:10.3390/md17090490.
  • Anderson P, Berridge V, Conrod P, Dudley R, Hellman M, Lachenmeier D, Lingford-Hughes A, Miller D, Rehm J, Room R, et al. Reframing the science and policy of nicotine, illegal drugs and alcohol - conclusions of the ALICE RAP Project. F1000Res. 2017;6:289. doi:10.12688/f1000research.10860.1.
  • Wang LP, Li F, Shen X, Tsien JZ. Conditional knockout of NMDA receptors in dopamine neurons prevents nicotine-conditioned place preference. PLoS One. 2010;5:e8616. doi:10.1371/journal.pone.0008616.
  • Jain R, Mukherjee K, Balhara YP. The role of NMDA receptor antagonists in nicotine tolerance, sensitization, and physical dependence: a preclinical review. Yonsei Med J. 2008;49:175–88. doi:10.3349/ymj.2008.49.2.175.
  • Biala G, Budzynska B. Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav. 2008;89:116–25. doi:10.1016/j.pbb.2007.12.005.
  • Padula AE, Griffin WC 3rd, Lopez MF, Nimitvilai S, Cannady R, McGuier NS, Chesler EJ, Miles MF, Williams RW, Randall PK, et al. KCNN genes that encode small-conductance Ca2+-activated K+ channels influence alcohol and drug addiction. Neuropsychopharmacol. 2015;40:1928–39. doi:10.1038/npp.2015.42.
  • Matheson J, Le Foll B. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor (PPAR) agonists in substance use disorders: a synthesis of preclinical and human evidence. Cells. 2020;9:1196. doi:10.3390/cells9051196.
  • Kotagale NR, Walke S, Shelkar GP, Kokare DM, Umekar MJ, Taksande BG. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system. Behav Brain Res. 2014;262:118–24. doi:10.1016/j.bbr.2014.01.004.
  • Batista PA, Werner MF, Oliveira EC, Burgos L, Pereira P, Brum LF, Story GM, Santos AR. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J Pain. 2010;11:1222–29. doi:10.1016/j.jpain.2010.02.022.
  • Gahukar RT. Management of pests and diseases of important tropical/subtropical medicinal and aromatic plants: a review. J Appl Res Med Aromat Plants. 2018;9:1–18. doi:10.1016/j.jarmap.2018.03.002.
  • Ceylan S, Yoldas F, Cakici H, Mordogan N, Bayram E. Effects of nitrogen rates on nitrogen accumulation, ascorbic acid and essential oil contents in parsley. Asian J Chem. 2006;18:2113–18.
  • Celik S, Ozkaya A. Effects of intraperitoneally administered lipoic acid, vitamin E, and linalool on the level of total lipid and fatty acids in guinea pig brain with oxidative stress induced by H2O2. J Biochem Mol Biol. 2002;35:547–52. doi:10.5483/bmbrep.2002.35.6.547.
  • Linck VM, Da Silva AL, Figueiró M, Caramão EB, Moreno PR, Elisabetsky E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine. 2010;17:679–83. doi:10.1016/j.phymed.2009.10.002.
  • Seol GH, Kang P, Lee HS, Seol GH. Antioxidant activity of linalool in patients with carpal tunnel syndrome. BMC Neurol. 2016;16:17. doi:10.1186/s12883-016-0541-3.
  • Wu Q, Yu L, Qiu J, Shen B, Wang D, Soromou LW, Feng H. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway. Int Immunopharmacol. 2014;21:456–63. doi:10.1016/j.intimp.2014.05.030.
  • Sabogal-Guáqueta AM, Posada-Duque R, Cortes NC, Arias-Londoño JD, Cardona-Gómez GP. Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: attenuation by linalool. Neuropharmacology. 2018;135:555–71. doi:10.1016/j.neuropharm.2018.04.015.
  • Leal-Cardoso JH, Da Silva-alves KS, Ferreira-da-silva FW, Dos Santos-nascimento T, Joca HC, De Macedo FH, De Albuquerque-neto PM, Magalhães PJ, Lahlou S, Cruz JS, et al. Linalool blocks excitability in peripheral nerves and voltage-dependent Na+ current in dissociated dorsal root ganglia neurons. Eur J Pharmacol. 2010;645:86–93. doi:10.1016/j.ejphar.2010.07.014.
  • Vlachou S, Guery S, Froestl W, Banerjee D, Benedict J, Finn MG, Markou A. Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats. Psychopharmacology (Berl). 2011;215:117–28. doi:10.1007/s00213-010-2119-x.
  • Li S, Li Z, Pei L, Le AD, Liu F. The α7nACh-NMDA receptor complex is involved in cue-induced reinstatement of nicotine seeking. J Exp Med. 2012;209:2141–47. doi:10.1084/jem.20121270.
  • Vatanparast J, Bazleh S, Janahmadi M. The effects of linalool on the excitability of central neurons of snail Caucasotachea atrolabiata. Comp Biochem Physiol C Toxicol Pharmacol. 2017;192:33–39. doi:10.1016/j.cbpc.2016.12.004.
  • Jackson A, Bagdas D, Muldoon PP, Lichtman AH, Carroll FI, Greenwald M, Miles MF, Damaj MI. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: implication for nicotine dependence. Neuropharmacology. 2017;118:38–45. doi:10.1016/j.neuropharm.2017.03.005.
  • Re L, Barocci S, Sonnino S, Mencarelli A, Vivani C, Paolucci G, Scarpantonio A, Rinaldi L, Mosca E. Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacol Res. 2000;42:177–82. doi:10.1006/phrs.2000.0671.
  • Li X, Semenova S, D’Souza MS, Stoker AK, Markou A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: implications for novel pharmacotherapies for smoking cessation. Neuropharmacology. 2014;76:554–65. doi:10.1016/j.neuropharm.2013.05.042.
  • Yararbas G, Keser A, Kanit L, Pogun S. Nicotine-induced conditioned place preference in rats: sex differences and the role of mGluR5 receptors. Neuropharmacology. 2010;58:374–82. doi:10.1016/j.neuropharm.2009.10.001.
  • Fattore L, Spano MS, Cossu G, Scherma M, Fratta W, Fadda P. Baclofen prevents drug-induced reinstatement of extinguished nicotine-seeking behaviour and nicotine place preference in rodents. Eur Neuropsychopharmacol. 2009;19:487–98. doi:10.1016/j.euroneuro.2009.01.007.
  • Le Foll B, Di Ciano P, Panlilio LV, Goldberg SR, Ciccocioppo R. Peroxisome proliferator-activated receptor (PPAR) agonists as promising new medications for drug addiction: preclinical evidence. Curr Drug Targets. 2013;14:768–76. doi:10.2174/1389450111314070006.
  • Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther. 2013;138:84–102.
  • Kutlu MG, Connor DA, Tumolo JM, Cann C, Garrett B, Gould TJ. Nicotine modulates contextual fear extinction through changes in ventral hippocampal GABAergic function. Neuropharmacology. 2018;141:192–200. doi:10.1016/j.neuropharm.2018.08.019.
  • Aguilar MA, Rodríguez-Arias M, Miñarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev. 2009;59:253–77. doi:10.1016/j.brainresrev.2008.08.002.
  • Blanco-Gandía MC, Aguilar MA, Miñarro J, Rodríguez-Arias M. Reinstatement of drug-seeking in mice using the conditioned place preference paradigm. J Vis Exp. 2018. doi:10.3791/56983.
  • Hosseinzadeh H, Imenshahidi M, Hosseini M, Razavi BM. Effect of linalool on morphine tolerance and dependence in mice. Phytother Res. 2012;26:1399–404. doi:10.1002/ptr.3736.
  • Pourtaqi N, Imenshahidi M, Razavi BM, Hosseinzadeh H. Effect of linalool on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Avicenna J Phytomed. 2017;7:242–49.
  • Sala M, Braida D, Pucci L, Manfredi I, Marks MJ, Wageman CR, Grady SR, Loi B, Fucile S, Fasoli F, et al. CC4, a dimer of cytisine, is a selective partial agonist at α4β2/α6β2 nAChR with improved selectivity for tobacco smoking cessation. Br J Pharmacol. 2013;168:835–49. doi:10.1111/j.1476-5381.2012.02204.x.
  • Napier TC, Herrold AA, De Wit H. Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev. 2013;37:2081–86. doi:10.1016/j.neubiorev.2013.05.002.
  • Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12:227–462.
  • Shram MJ, Lê AD. Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behav Brain Res. 2010;206:240–44. doi:10.1016/j.bbr.2009.09.018.
  • Titomanlio F, Perfumi M, Mattioli L. Rhodiola rosea L. extract and its active compound salidroside antagonized both induction and reinstatement of nicotine place preference in mice. Psychopharmacology (Berl). 2014;231:2077–86. doi:10.1007/s00213-013-3351-y.
  • Yusoff NH, Mansor SM, Müller CP, Hassan Z. Baclofen blocks the acquisition and expression of mitragynine-induced conditioned place preference in rats. Behav Brain Res. 2018;345:65–71. doi:10.1016/j.bbr.2018.02.039.
  • Mattioli L, Titomanlio F, Perfumi M. Effects of a Rhodiola rosea L. extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice. Psychopharmacology (Berl). 2012;221:183–93. doi:10.1007/s00213-012-2686-0.
  • Zarrindast MR, Bahreini T, Adl M. Effect of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice. Pharmacol Biochem Behav. 2002;73:941–49. doi:10.1016/S0091-3057(02)00951-6.
  • Philibin SD, Cameron AJ, Schlumbohm JP, Metten P, Crabbe JC. Ethanol withdrawal-induced motor impairment in mice. Psychopharmacology (Berl). 2012;220:367–78. doi:10.1007/s00213-011-2483-1.
  • Lu L, Liu Y, Zhu W, Shi J, Liu Y, Ling W, Kosten TR. Traditional medicine in the treatment of drug addiction. Am J Drug Alcohol Abuse. 2009;35:1–11. doi:10.1080/00952990802455469.
  • Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3:200–01. doi:10.4103/2231-4040.104709.
  • Andrade ALM, De Micheli D. Innovations in the treatment of substance addiction. Springer International Publishing. Copyright ©️ 2016.
  • Pogun S, Yararbas G, Nesil T, Kanit L. Sex differences in nicotine preference. J Neurosci Res. 2017;95:148–62. doi:10.1002/jnr.23858.
  • Biala G, Staniak N, Budzynska B. Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:361–70. doi:10.1007/s00210-010-0498-5.
  • Biala G, Budzynska B. Reinstatement of nicotine-conditioned place preference by drug priming: effects of calcium channel antagonists. Eur J Pharmacol. 2006;537:85–93. doi:10.1016/j.ejphar.2006.03.017.
  • File SE, Cheeta S, Akanezi C. Diazepam and nicotine increase social interaction in gerbils: a test for anxiolytic action. Brain Res. 2001;888:311–13. doi:10.1016/S0006-8993(00)03102-4.
  • Fartootzadeh R, Azizi F, Alaei H, Reisi P. Functional crosstalk of nucleus accumbens CB1 and OX2 receptors in response to nicotine-induced place preference. Neurosci Lett. 2019;698:160–64. doi:10.1016/j.neulet.2019.01.027.
  • Sahraei H, Falahi M, Zarrindast MR, Sabetkasaei M, Ghoshooni H, Khalili M. The effects of nitric oxide on the acquisition and expression of nicotine-induced conditioned place preference in mice. Eur J Pharmacol. 2004;503:81–87. doi:10.1016/j.ejphar.2004.08.054.
  • Bisaga A, Popik P. In search of a new pharmacological treatment for drug and alcohol addiction: n-methyl-D-aspartate (NMDA) antagonists. Drug Alcohol Depend. 2000;59:1–15. doi:10.1016/S0376-8716(99)00107-6.
  • Tsukada H, Nishiyama S, Fukumoto D, Sato K, Kakiuchi T, Domino EF. Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacol. 2005;30:1861–69. doi:10.1038/sj.npp.1300732.
  • Yavas E, Young AM. N-Methyl-d-aspartate modulation of nucleus accumbens dopamine release by metabotropic glutamate receptors: fast cyclic voltammetry studies in rat brain slices in vitro. Acs Chem Neurosci. 2017;8:320–28. doi:10.1021/acschemneuro.6b00397.
  • Elisabetsky E, Brum LF, Souza DO. Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomedicine. 1999;6:107–13. doi:10.1016/S0944-7113(99)80044-0.
  • Silva Brum LF, Emanuelli T, Souza DO, Elisabetsky E. Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes. Neurochem Res. 2001;26:191–94. doi:10.1023/A:1010904214482.
  • Blokhina EA, Kashkin VA, Zvartau EE, Danysz W, Bespalov AY. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice. Eur Neuropsychopharmacol. 2005;15:219–25. doi:10.1016/j.euroneuro.2004.07.005.
  • Paterson NE, Froestl W, Markou A. The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology (Berl). 2004;172:179–86. doi:10.1007/s00213-003-1637-1.
  • Varani AP, Aso E, Moutinho LM, Maldonado R, Balerio GN. Attenuation by baclofen of nicotine rewarding properties and nicotine withdrawal manifestations. Psychopharmacology (Berl). 2014;231:3031–40. doi:10.1007/s00213-014-3469-6.
  • Cline M, Taylor JE, Flores J, Bracken S, McCall S, Ceremuga TE. Investigation of the anxiolytic effects of linalool, a lavender extract, in the male Sprague-Dawley rat. Aana J. 2008;76:47–52.
  • Milanos S, Elsharif SA, Janzen D, Buettner A, Villmann C. Metabolic products of linalool and modulation of GABA(A) receptors. Front Chem. 2017;5:46. doi:10.3389/fchem.2017.00046.
  • Harada H, Kashiwadani H, Kanmura Y, Kuwaki T. Linalool odor-induced anxiolytic effects in mice. Front Behav Neurosci. 2018;12:241. doi:10.3389/fnbeh.2018.00241.
  • Bitzer ZT, Goel R, Reilly SM, Elias RJ, Silakov A, Foulds J, Muscat J, Richie JP Jr. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radic Biol Med. 2018;120:72–79. doi:10.1016/j.freeradbiomed.2018.03.020.
  • Cullingford TE, Bhakoo K, Peuchen S, Dolphin CT, Patel R, Clark JB. Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system. J Neurochem. 1998;70:1366–75. doi:10.1046/j.1471-4159.1998.70041366.x.
  • Melis M, Carta G, Pistis M, Banni S. Physiological role of peroxisome proliferator-activated receptors type α on dopamine systems. CNS Neurol Disord Drug Targets. 2013;12:70–77. doi:10.2174/1871527311312010012.
  • Donvito G, Piscitelli F, Muldoon P, Jackson A, Vitale RM, D’Aniello E, Giordano C, Ignatowska-Jankowska BM, Mustafa MA, Guida F, et al. N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice. Neuropharmacology. 2019;148:320–31. doi:10.1016/j.neuropharm.2018.03.020.
  • Jun HJ, Lee JH, Kim J, Jia Y, Kim KH, Hwang KY, Yun EJ, Do KR, Lee SJ. Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. J Lipid Res. 2014;55:1098–110. doi:10.1194/jlr.M045807.
  • Lee SJ, Jia Y. The effect of bioactive compounds in tea on lipid metabolism and obesity through regulation of peroxisome proliferator-activated receptors. Curr Opin Lipidol. 2015;26:3–9. doi:10.1097/MOL.0000000000000145.
  • Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharm Sin B. 2017;7:427–38. doi:10.1016/j.apsb.2017.05.005.
  • Ma L, Wu YM, Guo YY, Yang Q, Feng B, Song Q, Liu SB, Zhao DQ, Zhao MG. Nicotine addiction reduces the large-conductance Ca(2+)-activated potassium channels expression in the nucleus accumbens. Neuromolecular Med. 2013;15:227–37. doi:10.1007/s12017-012-8213-y.
  • Peana AT, De Montis MG, Nieddu E, Spano MT, D’Aquila PS, Pippia P. Profile of spinal and supra-spinal antinociception of (-)-linalool. Eur J Pharmacol. 2004;485:165–74. doi:10.1016/j.ejphar.2003.11.066.
  • Faulkner P, Petersen N, Ghahremani DG, Cox CM, Tyndale RF, Hellemann GS, London ED. Sex differences in tobacco withdrawal and responses to smoking reduced-nicotine cigarettes in young smokers. Psychopharmacology. 2018;235:193–202. doi:10.1007/s00213-017-4755-x.
  • Allahverdiyev O, Nurten A, Enginar N. Assessment of rewarding and reinforcing properties of biperiden in conditioned place preference in rats. Behav Brain Res. 2011;225:642–45. doi:10.1016/j.bbr.2011.07.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.