989
Views
53
CrossRef citations to date
0
Altmetric
Original

Pharmacogenetic Treatments for Drug Addiction: Cocaine, Amphetamine and Methamphetamine

, Ph.D., , M.D. & , Ph.D.
Pages 161-177 | Published online: 21 Jul 2009

REFERENCES

  • Giacomini K. M., Brett C. M., Altman R. B., Benowitz N. L., Dolan M. E., Flockhart D. A., Johnson J. A., Hayes D. F., Kelein T., Krauss R. M., Kroetz D. L., McLeod H. L., Nguyen A. T., Ratain M. J., Relling M. V., Reuss V., Roden D. M., Schaefer C. A., Shuldiner A. R., Skaar T., Tantisira K. T.R.F., Wang L., Weinshilboum R. M., Weiss S. T., Zineh I., Network P. R. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther. 2007; 81(3)328–45
  • Liao G., Zhang X., Clark D. J., Peltz G. A genomic “roadmap” to “better” drugs. Drug Metab Rev. 2008; 40(2)225–239
  • Drolet B., Simard C., Mizoue L., Roden D. M. Human cardiac potassium channel DNA polymorphism modulates access to drug-binding site and causes drug resistance. J Clin Invest. 2005; 115(8)
  • Simard C., Drolet B., Yang P. R.B., K., Roden D. M. Polymorphism screening in the cardiac K+ channel gene KCNA5. Clin Pharmacol Ther. 2005; 77(3)138–44
  • Gurbel P. A., Bliden K. P., Hiatt B. L., O'Connor C. M. Clopidogrel for coronary stenting: reponsive variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 2003; 107(23)
  • Tantisira K. G., Hwang E. S., Raby B. A., Silverman E. S., Lake S. L., Richter B. G., Peng S. L., Drazen J. M., Glimcher L. H., Weiss S. T. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci USA. 2004; 101(52)18099–104
  • Johnson J. A. Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet. 2003; 19(11)660–6
  • Matetzky S., Shenkman B., Guetta V., Shechter M., Bienart R., Goldenberg I., Novikov I., Savion N., Varon D., Hod H. Clopidogrel resistance is associated with inicreased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 2004; 109(25)3171–5
  • Weiss S. T., Litonju A. A., Lange C., Lazarus R., Liggett S. B., Bleecker E. R., Tantisira K. G. Overview of the pharmacogenetics of asthma treatment. Pharmacogenetics J. 2006; 6(5)311–26
  • Paez J. G., Janne P. A., Lee J. C., Tracy S., Greulich H., Gabriel S., Herman P., Kaye F. J., Lindeman N., Boggon T. J., Naoki K., Sasaki H., Fujii Y., Eck M. J., Sellers W. R., Johnson B. E., Meyerson M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304(5676)1497–500
  • Holleman A., Cheok M. H., Den Boer M. L., Yang W., Veerman A. J., Kazemier K. M., Pei D., Cheng C., Pui C. H., Relling M. V., Janka-Schaub G. E., Pieters R., Evans W. E. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and reponse to treatment. N Engl J Med 2004; 351(6)601–3
  • Goetz M. P., Rae J. M., Suman V. J., Safgren S. L., Ames M. M., Visscher D. W., Reynolds C., Couch F. J., Lingle W. L., Flockhart D. A., Desta Z., Perez E. A., Ingle J. N. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of eficacy and hot flashes. J Clin Oncol. 2005; 23(36)9312–8
  • Roses A. D. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet. 2004; 5(9)645–56
  • Shields A. E., Lerman C. Anticipating clinical intetration of pharmacogenetic treatment strategies for addiction: are primary care physicians ready?. Clin Pharmacol Ther. 2008; 83(4)635–639
  • Sofuoglu M., Kosten T. R. Emerging pharmacological strategies in the fight against cocaine addiction. Expert Opin Investig Drugs. 2006; 11(1)91–98
  • O'Brien C. P. Anticraving medications for relapse prevention: a possible new class of psychoactive medications. Am J Psychiatry 2005; 162(8)1423–1431
  • Malhotra A. K., Murphy G. M. J., Kennedy J. L. Pharmacogenetics of psychotropic drug response. Am J Psychiatry 2004; 161(5)780–96
  • Murphy G. M. J., Kremer C., Rodrigues H. E., Schatzberg A. F. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160(10)1830–5
  • Gupta S., Jain S., Brahmachari S. K., Kukreti R. Pharmacogenetics: a path to predictive medicine for schizophrenia. Pharmacogenomics. 2006; 7(1)
  • deLeon J., Armstrong S. C., Cozza K. L. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 and CYP450 2C19. Psychosomatics. 2006; 47(1)75–85
  • Rogers J. F., Nafziger A. N., Bertino J. S. J. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med. 2002; 113(9)746–50
  • Scordo M. G., Spina E. Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics. 2002; 3(2)201–18
  • Zhang X. Y., Zhou D. F., Wu G. Y., Cao L. Y., Tan Y. L., Haile C. N., Li J., Lu L., Kosten T. A., Kosten T. R. BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia. Neuropharmacology 2008; 33(9)2200–2205
  • Zhang X. Y., Tan Y. L., Zhou D. F., Cao L. Y., Wu G. Y., Haile C. N., Kosten T. A., Kosten T. R. Disrupted antioxidant enzyme activity and elevated lipid peroxidation products in schizophrenic patients with tardive dyskinesia. J Clin Psychiatry. 2007; 68(5)754–760
  • Laje G., Paddock S., Manji H., Rush A. J., Wilson A. F., Charney D. S., McMahon F. J. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 2007; 164: 1530–1538
  • Leshner A. I. Addiction is a brain disease, and it matters. Science 1997; 278(5335)45–47
  • Weisner C., Matzger H., Kaskutas L. A. How important is treatment? One-year outcomes of treated and untreated alcohol-dependent individuals. Addiction 2003; 98(7)901–11
  • Simpson D. D., Joe G. W., Broome K. M. A national 5-year follow-up of treatment outcomes for cocaine dependence. Arch Gen Psychiatry 2002; 59(6)538–65
  • Goldman D., Oroszi G., Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet. 2005; 6(7)521–532
  • Yacubian J., Sommer T., Schroeder K., Glascher J., Braus D. F., Buchel C. Subregions of the ventral striatum show preferential coding of reward magnitude and probability. Neuroimage. 2007; 38(3)557–63
  • Haile C. N., Hiroi N., Nestler E. J., Kosten T. A. Differential behavioral responses to cocaine are associated with dynamics of mesolimbic dopamine proteins in Lewis and Fischer 344 rats. Synapse 2001; 41: 179–190
  • Haile C. N., Kosten T. R., Kosten T. A. Genetics of dopamine and its contribution to cocaine addiction. Behav Genet. 2007; 37(1)119–45
  • Haile C. N., Kosten T. A. Differential effects of D1- and D2-like compounds on cocaine self-administration in Lewis and Fischer 344 inbred rats. J Pharmacol Exp Ther. 2001; 299(2)509–18
  • Gabbay F. H. Variations in affect following amphetamine and placebo: markers of stimulant drug preference. Exp Clin Psychopharmacol. 2003; 11(1)91–101
  • Lott D. C., Kim S. J., Cook E. H. J., de Wit H. Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology 2005; 30(3)602–609
  • Haile C. N., Kosten T. A., Kosten T. R. Pharmacogenetic Treatments for Drug Addiction: Alcohol and Opiates. Am J Drug Alcohol Abuse 2008; 34: 355–381
  • Nestler E. J. Is there a common molecular pathway for addiction?. Nat Neurosci. 2005; 8(11)1445–1449
  • Heffner T. G., Hartman J. A., Seiden L. S. Feeding increases dopamine metabolism in the rat brain. Science 1980; 208: 1168–1170
  • Volkow N. D., Wise R. A. How can drug addiction help us understand obesity?. Nat Neurosci. 2005; 8(5)555–60
  • Robinson T. E., Berridge K. C. Addiction. Annu Rev Psychol. 2003; 54: 75–114
  • Hyman S. E., Malenka R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001; 2(10)695–703
  • Everitt B. J., Cardinal R. N., Parkinson J. A., Robbins T. W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann NY Acad Sci. 2003; 985: 233–50
  • Kalivas P. W. Glutamate systems in cocaine addiction. Curr Opin Pharmacol. 2004; 4(1)23–9
  • Roberts D. C., Koob G. F. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental. Pharmacol Biochem Behav. 1982; 17: 901–904
  • DiChiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988; 85: 5274–5278
  • Pettit H. O., Ettenberg A., Bloom F. E., Koob G. F. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 1984; 84: 167–173
  • Zito K. A., Vickers G., Roberts D. C. Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav. 1985; 23: 1029–1036
  • Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966; 13: 655–669
  • Snyder S. H., Coyle J. T. Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther. 1969; 165: 78–86
  • Lewis D. A., Melchitzky D. S., Sesack S. R., Whitehead R. E., Auh S., Sampson A. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol. 2001; 432(1)119–36
  • Mazei M. S., Pluto C. P., Kirkbride B., Pehek E. A. Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res. 2002; 936(1–2)58–67
  • Moron J. A., Brockington A., Wise R. A., Rocha B. A., Hope B. T. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002; 22(2)389–95
  • Nestler E. J. Molecular neurobiology of addiction. Am J Addict. 2001; 10: 201–217
  • Greengard P., Allen P. B., Nairn A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999; 23: 435–447
  • Terwilliger R. Z., Beitner-Johnson D., Sevarino K. A., Crain S. M., Nestler E. J. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 1991; 548: 100–110
  • Pierce R. C., Kalivas P. W. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev. 1997; 25: 192–216
  • Schank J. R., Liles L. C., Weinshenker D. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biol Psychiatry 2008; 63(11)1007–1012
  • Robinson T. E., Berridge K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993; 18: 247–291
  • Bartlett E., Hallin A., Chapman B., Angrist B. Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability?. Neuropsychopharmacology. 1997; 16(1)77–82
  • Gawin F. H., Kleber H. D. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 1986; 43(2)107–13
  • Hart C. L., Ward A. S., Haney M., Foltin R. W., Fischman M. W. Methamphetamine self-administration by humans. Psychopharmacology 2001; 157: 75–81
  • Fischman M. W., Schuster C. R. Cocaine self-administration in humans. Fed Proc. 1982; 41: 241–246
  • Wachtel S. R., de Wit H. Subjective and behavioral effects of repeated d-amphetamine in humans. Behav Pharm. 1999; 10(3)271–81
  • Vollm B. A., deAraujo I. E., Cowen P. J., Rolls E. T., Kringelbach M. L., Smith K. A., Jessard P., Heal R. J., Matthews P. M. Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology. 2004; 29: 1715–1722
  • Volkow N. D., Wang G. J., Fowler J. S., Logan J., Gatley S. J., Gifford A., Hitzemann R., Ding Y. S., Pappas N. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 1999; 156(9)1440–3
  • Volkow N. D., Wang G. J., Fowler J. S., Logan J., Gatley S. J., Hitzemann R., Chen A. D., Dewey S. L., Pappas N. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997; 386(6627)830–3
  • Laruelle M., Gelernter J., Innis R. B. D2 receptors binding potential is not affected by Taq1 polymorphisms at the D2 receptor gene. Mol Psychiatry. 1998; 3(3)261–5
  • Romach M. K., Glue P., Kampman K., Kaplan H. L., Somer G. R., Poole S., Clarke L., Coffin V., Cornish J., O'Brien C. P., Sellers E. M. Attenuation of the euphoric effects of cocaine by the dopamine D1/D5 antagonist ecopipam (SCH 39166). Arch Gen Psychiatry. 1999; 56(12)1101–6
  • Sherer M. A., Kumor K. M., Jaffe J. H. Effects of intravenous cocaine are partially attenuated by haloperidol. Psychiatry Res. 1989; 27(2)117–25
  • Newton T. F., Ling W., Kalechstein A. D., Uslaner J., Tervo K. Risperidone pre-treatment reduces the euphoric effects of experimentally administered cocaine. Psychiatry Res. 2001; 102(3)227–33
  • Alhassoon O. M., Dupont R. M., Schweinsburg B. C., Taylor M. J., Patterson T. L., Grant I. Regional cerebral blood flow in cocaine- versus methamphetamine-dependent patients with a history of alcoholism. Int J Neuropsychopharmacol. 2001; 4: 105–112
  • Hall F. S., Sora I., Drgonova J., Li X. F., Goeb M., Uhl G. R. Molecular mechanisms underlying the rewarding effects of cocaine. Ann N Y Acad Sci. 2004; 1025: 47–56
  • Shoptaw S., Watson D. W., Reiber C., Rawson R. A., Montgomery M. A., Majewska M. D., Ling W. Randomized controlled pilot trial of cabergoline, hydergine and levodopa/carbidopa: Los Angeles Cocaine Rapid Efficacy Screening Trial (CREST). Addiction 2005; 11(1)78–90
  • Kosten T. R., George T. P., Kosten T. A. The potential of dopamine agonists in drug addiction. Expert Opin Investig Drugs. 2002; 11(4)491–499
  • Kosten T. R., Morgan C., Kosten T. A. Treatment of heroin addicts using buprenorphine.H. Am J Drug Alcohol Abuse 1991; 17(2)119–28
  • Shoptaw S., Yang X., Rotheram-Fuller E. J., Hsieh Y. C., Kintaudi P. C., Charuvastra V. C., Ling W. Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use. J Clin Psychiatry. 2003; 64(12)1440–1448
  • Gonzalez G., Servarino K., Sofuoglu M., Poling J., Oliveto A., Gonsai K., George T. P., Kosten T. R. Tiagabine increases cocaine-free urines in cocaine-dependent methadone-treated patients: results of a randomized pilot study. Addiction 2003; 98(11)1625–32
  • Hameedi F. A., Rosen M. I., McCance -Katz E. F., McMahon T. J., Price L. H., Jatlow P. I., Woods S. W., Kosten T. R. Behavioral, physiological, and pharmacological interaction of cocaine and disulfiram in humans. Biol Psychiatry. 1995; 37(8)560–3
  • Carroll K. M., Fenton L. R., Ball S. A., Nich C., Frankforter T. L., Shi J., Rounsaville B. J. Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial. Arch Gen Psychiatry 2004; 61: 264–272
  • Cubells J. F., Zabetian C. P. Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. Psychopharmacology 2004; 174(4)463–76
  • Mikami L. R., Wieseler S., Souza R. L., Schopfter L. M., Nachon F., Lockridge O., Chautard-Freire-Maia E. A. Five new naturally occurring mutations of the BCHE gene and frequencies of 12 butyrylcholinesterase alleles in a Brazilian population. Pharmacogenet Genomics. 2008; 18(3)213–218
  • Towell J. F. r., Cho J. K., Roh B. L., Wang R. I. Disulfiram and erythrocyte aldehyde dehydrogenase inhibition. Clin Pharmacol Ther. 1983; 33(4)517–21
  • Johnson S. M., Fleming W. W. Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev. 1989; 41(4)435–88
  • Vaccari A., Saba P. L., Ruiu S., Collu M., Devoto P. Disulfiram and diethyldithiocarbamate intoxication affects the storage and release of striatal dopamine. Toxicol Appl Pharmacol. 1996; 139(1)102–8
  • Bourdelat-Parks B. N., Anderson G. M., Donaldson Z. R., Weiss J. M., Bonsall R. W., Emery M. S., Liles L. C., Weinshenker D. Effects of dopamine beta-hydroxylase genotype and disulfiram inhibition on catecholamine homeostasis in mice. Psychopharmacology 2005; 183(1)72–80
  • Schank J. R., Ventura R., Puglisi-Allegra S., Alcaro A., Cole C. D., Liles L. C., Seeman P., Weinshenker D. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology. 2006; 31(10)2221–30
  • McCance-Katz E. F., Kosten T. R., Jatlow P. Chronic disulfiram treatment effects on intranasal cocaine administration: initial results. Biol Psychiatry 1998; 43(7)540–3
  • McCance-Katz E. F., Kosten T. R., Jatlow P. Disulfiram effects on acute cocaine administration. Drug Alcohol Depend. 1998; 52(1)27–39
  • Wright C., Moore R. D. Disulfiram treatment of alcoholism. Am J Med. 1990; 88(6)647–55
  • Suh J. J., Pettinati H. M., Kampman K. M., O'Brien C. P. The status of disulfiram: a half of a century later. J Clin Psychopharmacol. 2006; 26(3)290–302
  • Carroll K. M., Nich C., Ball S. A., McCance E., Rounsavile B. J. Treatment of cocaine and alcohol dependence with psychotherapy and disulfiram. Addiction 1998; 93(5)713–27
  • Carroll K. M., Power M. E., Bryant K., Rounsaville B. J. One-year follow-up status of treatment-seeking cocaine abusers. Psychopathology and dependence severity as predictors of outcome. J Nerv Ment Dis. 1993; 181(2)71–9
  • George T. P., Chawarski M. C., Pakes J., Carroll K. M., Kosten T. R., Schottenfeld R. S. Disulfiram versus placebo for cocaine dependence in buprenorphine maintained subjects: a preliminary trial. Biol Psychiatry 2000; 47(12)1080–6
  • Higgins S. T., Budney A. J., Bickel W. K., Hughes J. R., Foerg F. Disulfiram therapy in patients abusing cocaine and alcohol. Am J Psychiatry 1993; 150(4)675–6
  • Petrakis I. L., Carroll K. M., Nich C., Gordon L. T., McCance-Kat z E. F., Frankforter T. L., Rounsaville B. J. Disulfiram treatment for cocaine dependence in methadone maintained opioid addicts. Addiction 2000; 95(2)219–28
  • McCance-Katz E. F., Price L. H., McDougle C. J., Kosten T. R., Black J. E., Jatlow P. I. Concurrent cocaine ethanol ingestion in humans: pharmacology, physiology, behavior, and the role of cocaethylene. Psychopharmacology 1993; 111(1)39–46
  • Carroll K. M., Nich C., Ball S. A., McCance E., Frankforter T. L., Rounsaville B. J. One year followup of disulfiram and psychotherapy for cocaine alcohol users: sustained effects of treatment. Addiction 2000; 95(9)1335–49
  • Martensen-Larsen O. Psychotic phenomena provoked by tetraethylthiuram disulfide. Q J Stud Alcohol. 1951; 12(2)206–16
  • Kalayasiri R., Sughondhabirom A., Gueorguieva R., Coric V. L., W.J., Morgan P. T., Cubells J. F., Malison R. T. Selfreported paranoia during laboratory “binge” cocaine selfadministration in humans. Pharmacol Biochem Behav. 2006; 83(2)249–56
  • Baker J. R., Jatlow P., McCance -Katz E. F. Disulfiram effects on responses to intravenous cocaine administration. Drug Alcohol Depend. 2007; 87(2–3)202–9
  • Haile C. N., During M. J., Jatlow P. I., Kosten T. R., Kosten T. A. Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats. Biol Psychiatry 2003; 54: 915–921
  • Cubells J. F., Kranzler H. R., McCance-Katz E. F., Anderson G. M., Malison R. T., Price L. H., Gelernter J. A haplotype at the DBH locus, associated with low plasma dopamine beta-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry. 2000; 5(1)56–63
  • Stewart L. C., Klinman J. P. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Annu Rev Biochem. 1988; 57: 551–592
  • Kaufman S., Friedman S. Dopamine-beta-hydroxylase. Pharmacol Rev. 1965; 17: 71–100
  • Senard J.-M., Rouet P. Dopamine beta-hydroxylase deficiency. Orphanet J Rare Dis 2006; 1(7)1–4
  • Deinum J., Steenbergen-Spanjers G. C., Jansen M., Boomsma F., Lenders J. W., van Ittersum F. J., Hück N., van den Heuvel L. P., Wevers R. A. DBH gene variants that cause low plasma dopamine beta hydroxylase with or without a severe orthostatic syndrome. A. J Med Genet. 2004; 41(4)e38
  • Garland E. M., Black B. K., Harris P. A., Harris D. R. Dopamine-beta-hydroxylase in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2007; 293: H684–H690
  • Grzanna R., Coyle J. T. Immunochemical studies on the turnover of rat serum dopamine beta-hydroxylase. Mol Pharmacol. 1977; 13(5)956–964
  • Weinshilboum R. M. Serum dopamine beta-hydroxylase. Pharmacol Rev. 1978; 30(2)133–66
  • Paclt I., Koudelová J. Changes of dopamine-beta-hydroxylase activity during ontogenesis in healthy subjects and in an experimental model (rats). Physiol Res. 2004; 53(6)661–7
  • Ross S. B., Wetterberg L., Myrhed M. Genetic control of plasma dopamine-beta-hydroxylase. Life Sci. 1973; 12(12)529–32
  • Weinshilboum R. M., Raymond F. A., Elveback L. R., Weidman W. H. Serum dopamine-beta-hydroxylase activity: sibling-sibling correlation. Science 1973; 181(103)943–945
  • Oxenstierna G., Edman G., Iselius L., Oreland L., Ross S. B., Sedvall G. Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals–a genetic study. J Psychiatr Res. 1986; 20(1)19–29
  • Wei J., Ramchand C. N., Hemmings G. P. Possible control of dopamine beta-hydroxylase via a codominant mechanism associated with the polymorphic (GT)n repeat at its gene locus in healthy individuals. Hum Genet. 1997; 99(1)52–5
  • Cubells J. F., vanKammen D. P., Kelley M. E., Anderson G. M., O'Connor D. T., Price L. H., Malison R. T., Rao P. A., Kobayashi K., Nagatsu T., Gelernter J. Dopamine beta-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation. Hum Genet. 1998; 102(5)533–540
  • Zabetian C. P., Anderson G. M., Buxbaum S. G., Elston R. C., Ichinose H., Nagatsu T., Kim K. S., Kim C. H., Malison R. T., Gelernter J., Cubells J. F. A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Genet. 2001; 68(2)515–522
  • Zabetian C. P., Buxbaum S. G., Elston R. C., Kohnke M. D., Anderson G. M., Gelernter J., Cubells J. F. The structure of linkage disequilibrium at the DBH locus strongly influences the magnitude of association between diallelic markers and plasma dopamine beta-hydroxylase activity. Am J Genet. 2003; 72(6)1389–1400
  • Kohnke M. D., Zabetian C. P., Anderson G. M., Kolb W., Gaertner I., Buchkremer G., Vonthein R., Schick S., Lutz U., Kohnke A. M., Cubells J. F. A genotype-controlled analysis of plasma dopamine beta-hydroxylase in healthy and alcoholic subjects: evidence for alcohol-related differences in noradrenergic function. Biol Psychiatry 2002; 52(12)1151–1158
  • Bhaduri N., Mukhopadhyay K. Correlation of plasma dopamine beta-hydroxylase activity with polymorphisms in DBH gene: A study on eastern Indian populaion. Cell Mol Neurobiol 2008; 28: 343–350
  • Cadet J.-L., Jayanthi S., Deng X. Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J. 2003; 17: 1775–1788
  • Tang Y. L., Epstein M. P., Anderson G. M., Zabetian C. P., Cubells J. F. Genotypic and haplotypic associations of the DBH gene with plasma dopamine beta-hydroxylase activity in African Americans. Eur J Hum Genet. 2007; 15(8)878–83
  • Guindalini C., Laranjeira R., Collier D., Messas G., Vallada H., Breen C. Dopamine-beta hydroxylase polymorphism and cocaine addiction. Behav Brain Funct 2008; 3(4)1–4
  • Tsuang M. T., Lyons M. J., Meyer J. M., Doyle T., Eisen S. A., Goldberg J., True W., Lin N., Toomey R., Eaves L. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities. Arch Gen Psychiatry. 1998; 55(11)967–72
  • Wei J., Ramchand C. N., Hemmings G. P. TaqI polymorphic sites at the human dopamine beta-hydroxylase gene possibly associated with biochemical alterations of the catecholamine pathway in schizophrenia. Psychiatr Genet. 1998; 8(1)19–24
  • Cubells J. F., Price L. H., Meyers B. S., Anderson G. M., Zabetian C. P., Alexopoulos G. S., Nelson J. C., Sanacora G., Kirwin P., Carpenter L., Malison R. T., Gelernter J. Genotype-controlled analysis of plasma dopamine beta-hydroxylase activity in psychotic unipolar major depression. Biol Psychiatry 2002; 51(5)358–64
  • Freire M. T., Hutz M. H., Bau C. H., The D BH. 1021 C/T polymorphism is not associated with alcoholism but possibly with patients' exposure to life events. J Neural Transm. 2005; 112(9)1269–74
  • Tang Y., Buxbaum S. G., Waldman I., Anderson G. M., Zabetian C. P., Köhnke M. D., Cubells J. F. A single nucleotide polymorphism at DBH, possibly associated with attention-deficit/hyperactivity disorder, associates with lower plasma dopamine beta-hydroxylase activity and is in linkage disequilibrium with two putative functional single nucleotide polymorphisms. Biol Psychiatry 2006; 60(10)1034–8
  • Mustapic M., Pivac N., Kozaric-Kovacic D., Dezeljin M., Cubells J. F., Muck-Seler D. Dopamine beta-hydroxylase (DBH) activity and -1021C/T polymorphism of DBH gene in combat-related post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet. 2007; 144(8)1087–9
  • Rogeness G. A., Maas J. W., Javors M. A., Macedo C. A., Harris W. R., Hoppe S. K. Diagnoses, catecholamine metabolism, and plasma dopamine-beta-hydroxylase. J Am Acad Child Adolesc Psychiatry. 1988; 27(1)121–5
  • Rogeness G. A., Javors M. A., Maas J. W., Macedo C. A., Fischer C. Plasma dopamine-beta-hydroxylase, HVA, MHPG, and conduct disorder in emotionally disturbed boys. Biol Psychiatry. 1987; 22(9)1158–62
  • Rogeness G. A., Hernandez J. M., Macedo C. A., Mitchell E. L., Amrung S. A., Harris W. R. Clinical characteristics of emotionally disturbed boys with very low activities of dopamine-beta-hydroxylase. J Am Acad Child Psychiatry. 1984; 23(2)203–8
  • Rogeness G. A., Hernandez J. M., Macedo C. A., Amrung S. A., Hoppe S. K. Near-zero plasma dopamine-beta-hydroxylase and conduct disorder in emotionally disturbed boys. J Am Acad Child Psychiatry. 1986; 25(4)521–7
  • Galvin M., Shekhar A., Simon J., Stilwell B., Ten Eyck R., Laite G., Karwisch G., Blix S. Low dopamine-beta-hydroxylase: a biological sequela of abuse and neglect?. Psychiatry Res. 1991; 39(1)1–11
  • Healy D. G., Abou-Sleiman P. M., Ozawa T., Lees A. J., Bhatia K., Ahmadi K. R., Wullner U., Berciano J., Moller J. C., Kamm C., Burk K., Barone P., Tolosa E., Quinn N., Goldstein D. B., Wood N. W. A functional polymorphism regulating dopamine beta-hydroxylase influences against Parkinson's disease. Ann Neurol. 2004; 55(3)443–6
  • Jonsson E. G., Bah J., Melke J., Abou Jamra R., Schumacher J., Westberg L., Ivo R., Cichon S., Propping P., Nathen M. M., Eriksson E., Sedvall G. C. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry. 2004; 4(4)
  • Kalayasiri R., Sughondhabirom A., Gueorguieva R., Coric V., Lynch W. J., Lappalainen J., Gelernter J., Cubells J. F., Malison R. T. Dopamine beta-hydroxylase gene (DbetaH) -1021C–T influences self-reported paranoia during cocaine self-administration. Biol Psychiatry. 2007; 61(11)1310–3
  • Sughondhabirom A., Jain D., Gueorguieva R., Corvic V., Berman R., Lynch W. J., Self D. W., Jatlow P. R.T., M. A paradigm to investigate the self-regulation of cocaine administration in humans. Psychopharmacology 2005; 180(3)436–46
  • Brady K. T., Lydiard R. B., Malcolm R., Ballenger J. C. Cocaine-induced psychosis. J Clin Psychiatry. 1991; 52(12)509–12
  • Satel S. L., Edell W. S. Cocaine-induced paranoia and psychosis proneness. Am J Psychiatry 1991; 148(12)1708–11
  • Volkow N. D., Wang G. J., Fowler J. S., Logan J., Hitzemann R., Ding Y. S., Pappas N., Shea C., Piscani K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res. 1996; 20: 1594–1598
  • Volkow N. D., Fowler J. S., Wolf A. P., Schlyer D., Shiue C. Y., Alpert R., Dewey S. L., Logan J., Bendriem B., Christman D., et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 1990; 147(6)719–24
  • Volkow N. D., Chang L., Wang G. J., Fowler J. S., Franceschi D., Sedler M. J., Gately S. J., Hitzemann R., Ding Y. S., Wong C., Logan J. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry. 2001; 158: 383–389
  • Wang G. J., Volkow N. D., Fowler J. S., Logan J., Abumrad N. N., Hitzemann R. J., Pappas N. S., Pascani K. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropharmacology 1997; 16(2)174–82
  • Volkow N. D., Wang G. J., Fowler J. S., Thanos P., Logan J., Gatley S. J., Gifford A., Ding Y. S., Wong C., Pappas N., Brain D A. D2 receptors predict reinforcing effects of stimulants in humans: replications study. Synapse 2002; 46(2)79–82
  • Zubieta J. K., Gorelick D. A., Stauffer R., Ravert H. T., Dannals R. F., Frost J. J. Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat Med. 1996; 2(11)1225–9
  • Heinz A., Siessmeier T., Wrase J., Hermann D., Klein S., Grüsser S. M., Flor H., Braus D. F., Buchholz H. G., Gründer G., Schreckenberger M., Smolka M. N., Rösch F., Mann K., Bartenstein P. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 2004; 161(10)1741–2
  • Volkow N. D., Wang G. J., Begleiter H., Porjesz B., Fowler J. S., Telang F., Wong C., Ma Y., Logan J., Goldstein R. Z., Alexoff D., Thanos P. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry. 2006; 63(9)999–1008
  • Dalley J. W., Fryer T. D., Brichard L., Robinson E. S., Theobald D. E., Lääne K., Peña Y., Murphy E. R., Shah Y., Probst K., Abakumova I., Aigbirhio F. I., Richards H. K., Hong Y., Baron J. C., Everitt B. J., Robbins T. W. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007; 315(5816)1267–70
  • Flores G., Wood G. K., Barbeau D., Queirion R., Srivastava L. K. Lewis and Fischer rats: a comparison of dopamine transporter and receptor levels. Brain Res. 1998; 814(1–2)34–40
  • Stefanini E., Frau M., Garau M. G., Garau B., Fadda F., Gessa G. L. Alcohol-preferring rats have fewer dopamine D2 receptors in the limbic system. Alcohol Alcohol. 1992; 27(2)127–30
  • McBride W. J., Chernet E., Dyr W., Lumeng L., Li T. K. Densities of dopamine D2 receptors are reduced in CNS regions of alcohol-preferring P rats. Alcohol. 1993; 10(5)387–90
  • Maldonado R., Saiardi A., Valverde O., Samad T. A., Roques B. P., Borrelli E. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature. 1997; 388(6642)586–9
  • Phillips T. J., Brown K. J., Burkhart-Kasch S., Wenger C. D., Kelly M. A., Rubinstein M., Grandy D. K., Low M. J. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci. 1998; 1(2)610–5
  • Wang G. J., Volkow N. D., Chang L., Miller E., Sedler M., Hitzemann R., Zhu W., Logan J., Ma Y., Fowler J. S. Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry. 2004; 31: 313–319
  • Kawarai T., Kawakami H., Yamamura Y., Nakamura S. Structure and organization of the gene encoding human dopamine transporter. Gene 1997; 195(1)11–8
  • Volkow N. D., Wang G. J., Fowler J. S., Gatley S. J., Ding Y. S., Logan J., Dewey S. L., Hitzemann R., Lieberman J. Relationship between psychostimulant-induced “high” and dopamine transporter occupancy. Proc Natl Acad Sci U S A. 1996; 93(19)10388–92
  • Ritz M. C., Lamb R. J., Goldberg S. R., Kuhar M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 1987; 237: 1219–1223
  • Sulzer D., Sonders M. S., Poulsen N. W., Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog in Neurobiol. 2005; 75: 406–433
  • Liang N. Y., Rutledge C. O. Comparison of the release of [3H]dopamine from isolated corpus striatum by amphetamine, fenfluramine and unlabelled dopamine. Biochem Pharmacol. 1982; 31: 983–992
  • Haile C. N. Neurochemical and Neurobehavioral consequences of methamphetamine abuse. Drug Abuse Handbook, Second Ed., S. B. Karch. CRC Press, Boca Raton, FL, 33487 2007; 478–503
  • Giros B., Jaber M., Jones S. R., Wightman R. M., Caron M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379(6566)606–612
  • Mitchell R. J., Howlett S., Earl L., White N. G., McComb J., Schanfield M. S., Briceno I., Papiha S. S., Osipova L., Livshits G., Leonard W. R., Crawford M. H. Distribution of the 3′ VNTR polymorphism in the human dopamine transporter gene in world populations. Hum Biol. 2000; 72(2)295–304
  • Doucette-Stamm L A. B. D., Tian J, Mockus S, Mao J I. Population genetic study of the human dopamine transporter gene (DAT1). Genet Epidemiol. 1995; 12(3)303–8
  • Kang A. M., Palmatier M. A., Kidd K. K. Global variation of a 40-bp VNTR in the 3′ -untranslated region of the dopamine transporter gene (SLC6A3). Biol Psychiatry 1999; 46(2)151–60
  • Fuke S., Suo S., Takahashi N., Koike H., Sasagawa N., Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001; 1(2)152–156
  • Mill J., Asherson P., Browes C., D'Souza U., Craig I. Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: Evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet. 2002; 114(8)975–979
  • VanNess S. H., Owens M. J., Kilts C. D. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet. 2005; 27(6)55
  • Biederman J., Petty C. R., Wilens T. E., Fraire M. G., Purcell C. A., Mick E., Monuteaux M. C., Faraone S. V. Familial risk analyses of attention deficit hyperactivity disorder adn substance use disorders. Am J Psychiatry 2008; 165(1)107–15
  • Barkley R. A. Psychosocial treatments for attention-deficit/hyperactivity disorder in children. J Clin Psychiatry. 2002; 63(12)36–43
  • Aylward E. H., Reiss A. L., Reader M. J., Singer H. S., Brown J. E., Denckla M. B. Basal ganglia volumes in children with attention-deficit hyperactivity disorder. J Child Neurol. 1996; 11(2)112–5
  • Castellanos F. X., Giedd J. N., Marsh W. L., Hamburger S. D., Vaituzis A. C., Dickstein D. P., Sarfatti S. E., Vauss Y. C., Snell J. W., Lange N., Kaysen D., Krain A. L., Ritchie G. F., Rajapakse J. C., Rapoport J. L. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996; 53(7)607–16
  • Ernst M., Zametkin A. J., Matochik J. A., Jons P. H., Cohen R. M. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998; 18(15)5901–7
  • Krause K. H., Dresel S. H., Krause J., Kung H. F., , Tatsch K, et al. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission tomography. Neurosci Lett. 2000; 285(2)107–10
  • Krause K. H., Dresel S. H., Krause J., Kung H. F., , Tatsc K., Lochmuller H, et al. Elevated striatal dopamine transporter in a drug naive patient with Tourette syndrome adn attention deficit/hyperactivity disorder: positive effect of methylphenidate. J Neurol. 2002; 249(8)1116–8
  • Zametkin A. J., Liebenauer L. L., Fitzgerald G. A., King A. C., Minkunas D. V., Herscovitch P., Yamada E. M., Cohen R. M. Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1993; 50(5)333–40
  • Wilens T. E., Upadhyaya H. P. Impact of substance use disorder on ADHD and its treatment. J Clin Psychiatry. 2007; 68(8)e20
  • Volkow N. D., Fowler J. S., Wang G. J., Swanson J. M., Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007; 64(11)1575–9
  • Cook E. H. J., Stein M. A., Krasowski M. D., Cox N. J., Olkon D. M., Kieffer J. E., Leventhal B. L. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995; 56(4)993–998
  • Waldman I. D., Rowe D. C., Abramowitz A., Kozel S. T., Mohr J. H., Sherman S. L., Cleveland H. H., Sanders M. L., Gard J. M., Stever C. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnositc subtype and severity. Am J Hum Genet. 1998; 63(6)1767–76
  • Daly G., Hawi Z., Fitzgerald M., Gill M. Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry. 1999; 4(2)192–6
  • Brookes K. J., Mill J., Guindalini C., Curran S., Xu X., Knight J., Chen C. K., Huang Y. S., Sethna V., Taylor E., Chen W., Breen G., Asherson P. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch Gen Psychiatry. 2006; 63(1)74–81
  • Muglia P., Jain U., Inkster B., Kennedy J. L. A quantitative trait locus analysis of the dopamine transporter gene in adults with ADHD. Neuropsychopharmacology. 2002; 27(4)655–62
  • Kim D. J., Roh S., Kim Y. J., Yoon S. J., Lee H. K., Han C. S., Kim Y. K. High concentrations of plasma brain-derived neurotrophic factor in methamphetamine users. Neurosci Lett. 2005; 388(2)112–5
  • Bellgrove M. A., Chambers C. D., Johnson K. A., Daibhis A., Daly M., Hawi Z., Lambert D., Gill M., Robertson I. H. Dopaminergic genotype biases spatial attention in healthy children. Mol Psychiatry. 2007; 12(8)786–92
  • Guindalini C., Howard M., Haddley K., Laranjeira R., Collier D., Ammar N., Craig I., O'Gara C., Bubb V. J., Greenwood T., Kelsoe J., Asherson P., Murray R. M., Castelo A., Quinn J. P., Vallada H., Breen G. A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A. 2006; 103(12)4552–7
  • Winsberg B. G., Comings D. E. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry. 1999; 38(12)1474–7
  • Roman T., Rohde L. A., Hutz M. H. Polymorphisms of the dopamine transporter gene: influence on response to methylphenidate in attention deficit-hyperactivity disorder. Am J Pharmacogenomics. 2004; 4(2)83–92
  • Cheon K. A., Ryu Y. H., Kim J. W., Cho D. Y. The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol. 2005; 15(1)95–101
  • Kooij J. S., Boonstra A. M., Vermeulen S. H., Heister A. G., Burger H., Buitelaar J. K., Franke B. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet. 2007, oct 22 epub
  • Gilbert D. L., Wang Z., Sallee F. R., Ridel K. R., Merhar S., Zhang J., Lipps T. D., White C., Badreldin N., Wassermann E. M. Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain 2006; 129(8)2038–46
  • Joober R., Grizenko N., Sengupta S., Amor L. B., Schmitz N., Schwartz G., Karama S., Lageix P., Fathalli F. Torkaman-Zehi, A., and Ter Stepanian, M., Dopamine transporter 3′ -UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology. 2007; 32(6)1370–6
  • Mick E., Biederman J., Spencer T., Faraone S. V., Sklar P. Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. Am J Med Genet B Neuropsychiatr Genet. 2006; 141(8)890–4
  • Krause J., Dresel S. H., Krause K. H., La Fougère C., Zill P., Ackenheil M. Striatal dopamine transporter availability and DAT-1 gene in adults with ADHD: no higher DAT availability in patients with homozygosity for the 10-repeat allele. World J Biol Psychiatry. 2006; 7(3)152–7
  • Kirley A., Lowe N., Hawi Z., Mullins C., Daly G., Waldman I., McCarron M., O'Donnell D., Fitzgerald M., Gill M. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet. 2003; 121(1)50–4
  • Stein M. A., Waldman I. D., Sarampote C. S., Seymour K. E., Robb A. S., Conlon C., Kim S. J., Cook E. H. Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology. 2005; 30(7)1374–82
  • Levin F. R., Evans S. M., Brooks D. J., Garawi F. Treatment of cocaine dependent treatment seekers with adult ADHD: double-blind comparison of methylphenidate and placebo. Drug Alcohol Depend. 2007; 87(1)20–9
  • Collins S. L., Levin F. R., Foltin R. W., Kleber H. D., Evans S. M. Response to cocaine, alone and in combination with methylphenidate, in cocaine abusers with ADHD. Drug Alcohol Depend. 2006; 82(2)158–67
  • Volkow N. D., Hitzemann R., Wang G. J., Fowler J. S., Wolf A. P., Dewey S. L., Handlesman L. Long-term frontal brain metabolic changes in cocaine abusers. Synapse 1992; 11(3)184–90
  • Rosenkranz J. A., Grace A. A. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci. 2001; 21(11)4090–103
  • Goldstein R. Z., Volkow N. D., Chang L., Wang G. J., Fowler J. S., Depue R. A., Gur R. C. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 2002; 59(10)1642–52
  • Heinz A., Goldman D., Jones D. W., Palmour R., Hommer D., Gorey J. G., Lee K. S., Linnoila M., Weinberger D. R. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000; 22(2)133–139
  • Martinez D., Gelernter J., Abi-Dargham A., van Dyck C. H., Kegeles L., Innis R. B., Laruelle M. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001; 24(5)553–560
  • Jacobsen L. K., Staley J. K., Zoghbi S. S., Seibyl J. P., Kosten T. R., Innis R. B., Gelernter J. Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 2000; 157(10)1700–1703
  • van Dyck C. H., Malison R. T., Jacobsen L. K., Seibyl J. P., Staley J. K., Laruelle M., Baldwin R. M., Innis R. B., Gelernter J. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med. 2005; 46(5)745–751
  • Jonsson E. G., Nothen M. M., Gustavsson J. P., Neidt H., Bunzel R., Propping P., Sedvall G. C. Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Psychiatry Res. 1998; 79(1)1–9
  • Laruelle M., Abi-Dargham A., VanDyck C. H., Rosenblatt W., Zea-Ponce Y., Zonghbi S. S., Baldwin R. M., Charney D. S., Hoffer P. B., Kung H. F., et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med. 1995; 36(7)1182–90
  • Miller M. A., Hughes A. L. Epidemiology of amphetamine use in teh United States. Amphetamine and its Analogs, A. K. Cho, D. S. Segal. Academic Press, San Diego 1994; 503
  • Robbins T. W. Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res. 2000; 133(1)130–8
  • Kimberg D. Y., D'Esposito M., Farah M. J. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport. 1997; 8(16)1–5
  • Mehta M. A., Owen A. M., Sahakian B. J., Mavaddat N., Pickard J. D., Robbins T. W. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci. 2000; 20(6)RC65
  • Mitchell S. H., Laurent C. L., de Wit H. Interaction of expectancy and the pharmacological effects of d-amphetamine: subjective effects and self-administration. Psychopharmacology 1996; 125(4)371–8
  • Cesarec Z., Nyman A. K. Differential response to amphetamine in schizophrenia. Acta Psychiatr Scand. 1985; 71(5)523–38
  • Hutchison K. E., Wood M. D., Swift R. Personality factors moderate subjective and psychophysiological responses to d-amphetamine in humans. Exp Clin Psychopharmacol. 1999; 7(4)493–501
  • White T. L., Justice A. J., de Wit H. Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav. 2002; 73(4)729–41
  • Mattay V. S., Goldberg T. E., Fera F., Hariri A. R., Tessitore A., Egan M. F., Kolachana B., Callicott J. H., Weinberger D. R. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A. 2003; 100(10)6186–91
  • Dlugos A., Freitag C., Hohoff C., McDonald J. S., Cook E. H., Deckert J., de Wit H. Norepinephrine transporter gene variation modulates acute response to D-amphetamine. Biol Psychiatry. 2007; 61(11)1296–305
  • Lott D. C., Kim S. J., Cook E. H., de Wit H. Serotonin transporter genotype and acute subjective response to amphetamine. Am J Addict. 2006; 15(5)327–35
  • Hohoff C., McDonald J. M., Baune B. T., Cook E. H., Deckert J., de Wit H. Interindividual variation in anxiety response to amphetamine: possible role for adenosine A2A receptor gene variants. Am J Med Genet B Neuropsychiatr Genet. 2005; 139(1)42–4
  • Veenstra-VanderWeele J., Qaadir A., Palmer A. A., Cook E. H. J., de Wit H. Association between the casein kinase 1 epsilon gene region and subjective response to Damphetamine. Neuropsychopharmacology. 2006; 31(5)1056–63
  • Flanagin B. A., Cook E. H. J., de Wit H. An association study of the brain-derived neurotrophic factor Val66Met polymorphism and amphetamine response. Am J Med Genet B Neuropsychiatr Genet. 2006; 141(6)576–83
  • Vandenbergh D. J., Persico A. M., Hawkins A. L., Griffin C. A., Li X., Jabs E. W., Uhl G. R. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992; 14(4)1104–1106
  • Haertzen C. A., Kocher T. R., Miyasato K. Reinforcements from the first drug experience can predict later drug habits and/or addiction: results with coffee, cigarettes, alcohol, barbiturates, minor and major tranquilizers, stimulants, marijuana, hallucinogens, heroin, opiates and cocaine. Drug Alcohol Depend. 1983; 11(2)147–165
  • Fergusson D. M., Horwood L. J., Lynskey M. T., Madden P. A. Early reactions to cannabis predict later dependence. Arch Gen Psychiatry. 2003; 60(10)1033–1039
  • Gulley J. M., Everett C. V., Zahniser N. R. Inbred Lewis and Fischer 344 rat strains differ not only in novelty- and amphetamine-induced behaviors, but also in dopamine transporter activity in vivo. Brain Res. 2007; 1151(2)32–45
  • Haile C. N., Zhang X. Y., Carroll F. I., Kosten T. A. Cocaine self-administration and locomotor activity are altered in Lewis and F344 inbred rats by RTI 336, a 3-phenyltropane analog that binds to the dopamine transporter. Brain Res. 2005; 1055(1–2)186–95
  • Lake C. R., Quirk R. S. CNS stimulants and the look-alike drugs. Psychiatr Clin North Am 1984; 7: 689–701
  • Cook C. E., Jeffcoat A. R., Hill J. M., Pugh D. E., Patetta P. K., Sadler B. M., White W. R., Perez-Reyes M. Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos. 1993; 21: 717–723
  • Fischman M. W., Schuster C. R. Tolerance development to chronic methampetamine intoxication in the rhesus monkey. Pharmacol Biochem Behav. 1974; 2: 503–508
  • Perez-Reyes M., White W. R., McDonald S. A., Hicks R. E., Jeffcoat A. R., Hill J. M., Cook C. E. Clinical effects of daily methamphetamine administration. Clin Neuropharmacol. 1991; 14: 352–358
  • Martin W. R., Sloan J. W., Sapira J. D., Jasinski D. R. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther. 1971; 12: 245–248
  • Gawin F. H., Ellinwood E. H. J. Cocaine and other stimulants. Actions, abuse, and treatment. N Engl J Med. 1988; 318: 1173–1182
  • Cretzmeyer M., Sarrazin M. V., Huber D. L., Block R. I., Hall J. A. Treatment of methamphetamine abuse: research findings and clinical directions. J Subst Abuse Treat. 2003; 24: 267–277
  • Newton T. F., Kalechstein A. D., Duran S., Vansluis N., Ling W. Methamphetamine abstinence syndrome: preliminary findings. Am J Addict. 2004; 13: 248–255
  • Srisurapanont M., Ali R., Marsden J., Sunga A., Wada K., Monteiro M. Psychotic symptoms in methamphetamine psychotic in-patients. Int J Neuropsychopharmacol. 2003; 6: 347–352
  • Yui K., Ikemoto S., Ishiguro T., Goto K. Studies of amphetamine or methamphetamine psychosis in Japan: relation of methamphetamine psychosis to schizophrenia. Ann N Y Acad Sci. 2000; 914: 1–12
  • Akiyama K., Kanzaki A., Tsuchida K., Ujike H. Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia. Schizophrenia Res. 1994; 12: 251–257
  • Rose M. E., Grant J. E. Pharmacotherapy for methamaphetamine dependence: a review of the pathophysiology of methamphetamine addiction and the theoretical basis and efficacy of pharmacotherapeutic interventions. Ann Clin Psychiatry 2008; 20(3)145–155
  • Zetterstrom T., Sharp T., Collin A. K., Ungerstedt U. In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPAC. Eur J Pharmacol 1988; 148: 327–334
  • Fischer J., Cho A. Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther. 1979; 208: 203–209
  • Cubells J. F., Rayport S., Rajendran G., Sulzer D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci. 1994; 14(4)2260–71
  • Liu Y., Edwards R. H. The role of vesicular transport porteins in synaptic transmission and neural degeneration. Annu Rev Neurosci. 1997; 20: 125–156
  • Berman S. B., Zigmond M. J., Hastings T. G. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem. 1996; 67: 593–600
  • Fleckenstein A. E., Metzger R. R., Beyeler M. L., Gibb J. W., Hanson G. R. Oxygen radicals diminish dopamine transporter function in rat striatum. Eur J Pharmacol. 1997; 334: 111–114
  • Kokoshka J. M., Vaughan R. A., Hanson G. R., Fleckenstein A. E. Nature of methamphetamine-induced rapid and reversible changes in dopamine transporters. Eur J Pharmacol. 1998; 361: 269–275
  • Davidson C., Gow A. J., Lee T. H., Ellinwood E. H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev. 2001; 36: 1–22
  • Cho A. K., Melega W. P. Patterns of methamphetamine abuse and their consequences. J Addict Dis. 2002; 21: 21–34
  • Kita T., Wagner G. C., Nakashima T. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci. 2003; 92: 178–195
  • Metzger R. R., Haughey H. M., Wilkins D. G., Gibb J. W., Hanson G. R., Fleckenstein A. E. Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J Pharmacol Exp Ther. 2000; 295: 1077–1085
  • Ujike H., Onoue T., Akiyama K., Hamamura T., Otsuki S. Effects of selective D-1 and D-2 dopamine antagonists on development of methamphetamine-induced behavioral sensitization. Psychopharmacology 1989; 98: 89–92
  • Witkin J. M., Savtchenko N., Mashkovsky M., Beekman M., Munzar P., Gasior M., Goldberg S. R., Ungard J. T., Kim J., Shippenberg T., Chefer V. Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. J Pharmacol Exp Ther. 1999; 288: 1298–1310
  • Wong A. H. C., VanTol H. H. M. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 1091–1099
  • Okuyama S., Kawashima N., Chaki S., Yoshikawa R., Funakoshi T., Ogawa S. I., Suzuki Y., Ideda Y., Kumagai T., Nakazato A., Nagamine M., Tomisawa K. A selective dopamine D4 receptor antagonist, NRA0160: a preclinical neuropharmacological profile. Life Sci. 1999; 65: 2109–2125
  • Kamei H., Nagai T., Nakano H., Togan Y., Takayanagi M., Takahashi K., Kobayashi K., Yoshida S., Maeda K., Takuma K., Nabeshima T., Yamada K. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol Psychiatry 2006; 59(1)75–84
  • Wachtel S. R., Ortengren A., de Wit H. The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend. 2002; 68(1)23–33
  • McCann U. D., Wong D. F., Yokoi F., Villemagne V., Dannals R. F., Ricaurte G. A. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci. 1998; 18: 8417–8422
  • Sekine Y., Iyo M., Ouchi Y., Matsunaga T., Tsukada H., Okada H., Yoshikawa E., Futatsubashi M., Takei N., Mori N. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry. 2001; 58: 1206–1214
  • Iyo M., Sekine Y., Mori N. Neuromechanism of developing methamphetamine psychosis: a neuroimaging study. Ann N Y Acad Sci. 2004; 1025: 288–295
  • Chen C. K., Hu X., Lin S. K., Sham P. C.el-W, L., Li T., Murray R. M., Ball D. M. Association analysis of dopamine D2-like receptor genes and methamphetamine abuse. Psychiatr Genet. 2004; 14(4)223–6
  • Liu H. C., Lin S. K., Liu S. K., Chen S. L., Hu C. J., Chang J. G., Leu S. J. DAT polymorphism and diverse clinical manifestations in methamphetamine abusers. Psychiatr Genet. 2004; 14(1)33–7
  • Vandenbergh D. J., Rodriguez L. A., Hivert E., Schiller J. H., Villareal G., Pugh E. W., Lachman H., Uhl G. R. Long forms of the dopamine receptor (DRD4) gene VNTR are more prevalent in substance abusers: no interaction with functional alleles of the catechol-o-methyltransferase (COMT) gene. Am J Med Genet. 2000; 96(5)678–83
  • Hosák L., Libiger J., Cizek J., Beránek M., Cermáková E. The COMT Val158Met polymorphism is associated with novelty seeking in Czech methamphetamine abusers: preliminary results. Neuro Endocrinol Lett. 2006; 27(6)799–802
  • Suzuki A., Nakamura K., Sekine Y., Minabe Y., Takei N., Suzuki K., Iwata Y., Kawai M., Takebayashi K., Matsuzaki H., Iyo M., Ozaki N., Inada T., Iwata N., Harano M., Komiyama T., Yamada M., Sora I., Ujike H., Mori N. An association study between catechol-O-methyl transferase gene polymorphism and methamphetamine psychotic disorder. Psychiatr Genet. 2006; 16(4)133–8
  • Ujike H., Harano M., Inada T., Yamada M., Komiyama T., Sekine Y., Sora I., Iyo M., Katsu T., Nomura A., Nakata K., Ozaki N. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenetics J. 2003; 3(4)242–247
  • Matsuzawa D., Hashimoto K., Miyatake R., Shirayama Y., Shimizu E., Maeda K., Suzuki Y., Mashimo Y., Sekine Y., Inada T., Ozaki N., Iwata N., Harano M., Komiyama T., Yamada M., Sora I., Ujike H., Hata A., Sawa A., Iyo M. Identification of functional polymorphisms in the promoter region of the human PICK1 gene and their association with methamphetamine psychosis. Am J Psychiatry. 2007; 164(7)1105–14
  • Zimniak P., Nanduri B., Pikua S., Bandorowicz-Pikua J., Singhal S. S., Srivastava S. K., Awasthi S., Awasthi Y. C. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem. 1994; 224(3)893–9
  • Hashimoto T., Hashimoto K., Matsuzawa D., Shimizu E., Sekine Y., Inada T., Ozaki N., Iwata N., Harano M., Komiyama T., Yamada M., Sora I., Ujike H., Iyo M. A functional glutathione S-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2005; 135(1)5–9
  • Aoyama N., Takahashi N., Kitaichi K., Ishihara R., Saito S., Maeno N., Ji X., Takagi K., Sekine Y., Iyo M., Harano M., Komiyama T., Yamada M., Sora I., Ujike H., Iwata N., Inada T., Ozaki N. Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin Exp Res. 2006; 30(10)1644–9
  • Ikeda M., Ozaki N., Suzuki T., Kitajima T., Yamanouchi Y., Kinoshita Y., Kishi T., Sekine Y., Iyo M., Harano M., Komiyama T., Yamada M., Sora I., Ujike H., Inada T., Iwata N. Possible association of beta-arrestin 2 gene with methamphetamine use disorder, but not schizophrenia. Genes Brain Behav. 2007; 6(1)107–12
  • Ide S., Kobayashi H., Tanaka K., Ujike H., Sekine Y., Ozaki N., Inada T., Harano M., Komiyama T., Yamada M., Iyo M., Ikeda K., Sora I. Gene polymorphisms of the mu opioid receptor in methamphetamine abusers. Ann N Y Acad Sci. 2004; 1025: 316–24, (Oct)
  • Ide S., Kobayashi H., Ujike H., Ozaki N., Sekine Y., Inada T., Harano M., Komiyama T., Yamada M., Iyo M., Iwata N., Tanaka K., Shen H., Iwahashi K., Itokawa M., Minami M., Satoh M., Ikeda K., Sora I. Linkage disequilibrium and association with methamphetamine dependence/psychosis of muopioid receptor gene polymorphisms. Pharmacogenomics J. 2006; 6(3)179–88
  • Kobayashi H., Hata H., Ujike H., Harano M., Inada T., Komiyama T., Yamada M., Sekine Y., Iwata N., Iyo M., Ozaki N., Itokawa M., Naka M., Ide S., Ikeda K., Numachi Y., Sora I. Association analysis of delta-opioid receptor gene polymorphisms in methamphetamine dependence/psychosis. Am J Med Genet B Neuropsychiatr Genet. 2006; 141(5)482–6
  • Poo M. M. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2001; 2(1)24–32
  • Tyler W. J., Alonso M., Bramham C. R., Pozzo-Miller L. D. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002; 9(5)224–37
  • Horger B. A., Iyasere C. A., Berhow M. T., Messer C. J., Nestler E. J., Taylor J. R. Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci. 1999; 19(10)4110–22
  • Bolaños C. A., Nestler E. J. Neurotrophic mechanisms in drug addiction. Neuromolecular Med. 2004; 5(1)69–83
  • Jockers-Scherübl M. C., Danker-Hopfe H., Mahlberg R., Selig F., Rentzsch J., Schürer F., Lang U. E., Hellweg R. Brain-derived neurotrophic factor serum concentrations are increased in drug-naive schizophrenic patients with chronic cannabis abuse and multiple substance abuse. Neurosci Lett. 2004; 371(1)79–83
  • Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B., Weinberger D. R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003; 112(2)257–69
  • Cheng C. Y., Hong C. J., Yu Y. W., Chen T. J., Wu H. C., Tsai S. J. Brain-derived neurotrophic factor (Val66Met) genetic polymorphism is associated with substance abuse in males. Brain Res Mol Brain Res. 2005; 140(1–2)86–90
  • Hariri A. R., Goldberg T. E., Mattay V. S., Kolachana B. S., Callicott J. H., Egan M. F., Weinberger D. R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003; 23(17)6690–4
  • Liu Q. R., Walther D., Drgon T., Polesskaya O., Lesnick T. G., Strain K. J., de Andrade M., Bower J. H., Maraganore D. M., Uhl G. R. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's Disease. Am J Med Genet B Neuropsychiatr Genet. 2005; 134(1)93–103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.