51
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Horseradish peroxidase immobilized in calcium alginate-gelatin hybrid beads with high stability against metallic ions and organic solvents

, , &

References

  • Abd Rahim SN, Sulaiman A, Hamzah F, Hamid KHK, Rodhi MNM, Musa M, Edama NA. 2013. Enzymes encapsulation within calcium alginate-clay beads: characterization and application for Cassava Slurry Saccharification. Procedia Eng. 68:411–417. doi:10.1016/j.proeng.2013.12.200.
  • Abd Rahman RNZR, Geok LP, Basri M, Salleh AB. 2006. An organic solvent-stable alkaline protease from Pseudomonas Aeruginosa Strain K: enzyme purification and characterization. Enzyme Microb Technol. 39(7):1484–1491. doi:10.1016/j.enzmictec.2006.03.038.
  • Abdulaal WH, Almulaiky YQ, El-Shishtawy RM. 2020. Encapsulation of HRP enzyme onto a magnetic Fe3O4 Np–PMMA film via casting with sustainable biocatalytic activity. Catalysts. 10(2):181. doi:10.3390/catal10020181.
  • Akhtar S, Khan AA, Husain Q. 2004. An economical, simple and high yield procedure for the immobilization/stabilization of peroxidases from Turnip Roots. J Sci Ind. 63:540–547.
  • Alatawi RAS, Monier M, Elsayed NH. 2020. Preparation of photo-crosslinkable cinnamate modified hyaluronic acid for immobilization of horseradish peroxidase. Process Biochem. 88:67–77. doi:10.1016/j.procbio.2019.10.015.
  • Alemzadeh I, Nejati S. 2009. Phenols removal by immobilized horseradish peroxidase. J Hazard Mater. 166(2-3):1082–1086. doi:10.1016/j.jhazmat.2008.12.026.
  • Almulaiky YQ, Al-Harbi SA. 2022. Preparation of a calcium alginate-coated polypyrrole/silver nanocomposite for site-specific immobilization of polygalacturonase with high reusability and enhanced stability. Catal Lett. 152(1):28–42. doi:10.1007/s10562-021-03631-7.
  • Alshawafi WM, Aldhahri M, Almulaiky YQ, Salah N, Moselhy SS, Ibrahim IH, El-Shishtawy RM, Mohamed SA. 2018. Immobilization of horseradish peroxidase on pmma nanofibers incorporated with nanodiamond. Artif Cells Nanomed Biotechnol. 46(sup3):S973–S981. doi:10.1080/21691401.2018.1522321.
  • Asadi S, Eris S, Azizian S. 2018. Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions. ACS Omega. 3(11):15140–15148. doi:10.1021/acsomega.8b02498.
  • Atanasov V, Stoykova S, Kolev H, Mitewa M, Petrova S, Pantcheva I. 2013. Effect of some divalent metal ions on enzymatic activity of secreted phospholipase A2 (sPLA2) isolated from Bulgarian Vipera ammodytes meridionalis. Biotechnol Equip. 27(5):4181–4185. doi:10.5504/BBEQ.2013.0072.
  • Barbosa GSDS, Oliveira MEP, Dos Santos ABS, Sánchez OC, Soares CMF, Fricks AT. 2020. Immobilization of low-cost alternative vegetable peroxidase (Raphanussativus L. peroxidase): choice of support/technique and characterization. Molecules. 25(16):3668. doi:10.3390/molecules25163668.
  • Besharati Vineh M, Saboury AA, Poostchi AA, Rashidi AM, Parivar K. 2018. Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Int J Biol Macromol. 106:1314–1322. doi:10.1016/j.ijbiomac.2017.08.133.
  • Bilal M, Asgher M, Hu H, Zhang X. 2016. Kinetic characterization, thermo-stability and reactive red 195a dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. Water Sci Technol. 74(8):1809–1820. doi:10.2166/wst.2016.363.
  • Bilal M, Iqbal HMN. 2019. Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatal Agric Biotechnol. 20:101205. doi:10.1016/j.bcab.2019.101205.
  • Bilal M, Iqbal HM, Hu H, Wang W, Zhang X. 2017. Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci Total Environ. 575:1352–1360. doi:10.1016/j.scitotenv.2016.09.215.
  • Bilal M, Rasheed T, Iqbal HM, Hu H, Wang W, Zhang X. 2018. Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential. Int J Biol Macromol. 113:983–990. doi:10.1016/j.ijbiomac.2018.02.062.
  • Bilal M, Rasheed T, Zhao Y, Iqbal HM, Cui J. 2018. “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol. 119:278–290. doi:10.1016/j.ijbiomac.2018.07.134.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248–254. doi:10.1006/abio.1976.9999.
  • Dalal S, Gupta MN. 2007. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Chemosphere. 67(4):741–747. doi:10.1016/j.chemosphere.2006.10.043.
  • Dalginli KY, Atakisi O. 2023. Immobilization with Ca-Alg@gelatin hydrogel beads enhances the activity and stability of recombinant thermoalkalophilic lipase. Chem Pro Eng New Frontiers. 44:1–16. doi:10.24425/cpe.2022.142291.
  • Dey G, Singh B, Banerjee R. 2003. Immobilization of α–amylase produced Bacillus circulans GRS 313. Braz Arch Biol Technol. 46(2):167–176. doi:10.1590/S1516-89132003000200005.
  • El-Naggar ME, Abdel-Aty AM, Wassel AR, Elaraby NM, Mohamed SA. 2021. Immobilization of horseradish peroxidase on cationic microporous starch: physico-bio-chemical characterization and removal of phenolic compounds. Int J Biol Macromol. 181:734–742. doi:10.1016/j.ijbiomac.2021.03.171.
  • El-Shishtawy RM, Aldhahri M, Almulaiky YQ. 2020. Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: proof of concept study. Int J Biol Macromol. 163:1353–1360. doi:10.1016/j.ijbiomac.2020.07.278.
  • Gu Y, Yuan L, Li M, Wang X, Rao D, Bai X, Shi K, Xu H, Hou S, Yao H. 2022. Co-immobilized bienzyme of horseradish peroxidase and glucose oxidase on dopamine-modified cellulose–chitosan composite beads as a high-efficiency biocatalyst for degradation of acridine. RSC Adv. 12(35):23006–23016. doi:10.1039/d2ra04091c.
  • Gulmez C. 2022. Glucose tolerance, antiprotease activity and total oxidant/antioxidant capacity studies of β-glucosidase hybrid nanoflower for industrial applications. Chem Biodivers. 19(7):e202200170.
  • Gulmez C, Altinkaynak C, Özdemir N, Atakisi O. 2018a. Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive. Int J Biol Macromol. 119:803–810. doi:10.1016/j.ijbiomac.2018.07.195.
  • Gulmez C, Altinkaynak C, Ozturkler M, Ozdemir N, Atakisi O. 2021. Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors. J Biosci Bioeng. 132(4):327–336. doi:10.1016/j.jbiosc.2021.06.002.
  • Gulmez C, Atakisi O, Dalginli KY, Atakisi E. 2018b. A novel detergent additive: organic solvent-and thermo-alkaline-stable recombinant subtilisin. Int J Biol Macromol. 108:436–443. doi:10.1016/j.ijbiomac.2017.11.133.
  • Hermanová S, Zarevúcká M, Bouša D, Pumera M, Sofer Z. 2015. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale. 7(13):5852–5858. doi:10.1039/c5nr00438a.
  • Hiremath PG, Theodore T. 2017. Biosorption of fluoride from synthetic and ground water using chlorella vulgaris immobilized in calcium alginate beads in an upflow packed bed column. Period Polytech Chem Eng. 61(3):188–199. doi:10.3311/PPch.10085.
  • Huang J, Jiao L, Xu W, Wang H, Sha M, Wu Z, Gu W, Hu L, Zhu C. 2022. Amorphous metal-organic frameworks on ptcu hydrogels: enzyme immobilization platform with boosted activity and stability for sensitive biosensing. J Hazard Mater. 432:128707. doi:10.1016/j.jhazmat.2022.128707.
  • Imam HT, Marr PC, Marr AC. 2021. Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chem. 23(14):4980–5005. doi:10.1039/D1GC01852C.
  • Jamal F, Qidwai T, Singh D, Pandey PK. 2012. Biocatalytic activity of immobilized pointed gourd (trichosanthesdioica) peroxidase–concanavalin a complex on calcium alginate pectin gel. J Mol Catal B Enzym. 74(1-2):125–131. doi:10.1016/j.molcatb.2011.09.008.
  • Jankowska K, Zdarta J, Grzywaczyk A, Degórska O, Kijeńska-Gawrońska E, Pinelo M, Jesionowski T. 2021. Horseradish peroxidase immobilised onto electrospunfibres and its application in decolourisation of dyes from model sea water. Process Biochem. 102:10–21. doi:10.1016/j.procbio.2020.11.015.
  • Jonović M, Jugović B, Žuža M, Đorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. 2022. Immobilization of horseradish peroxidase on magnetite-alginate beads to enable effective strong binding and enzyme recycling during anthraquinone dyes’ degradation. Polymers (Basel). 14(13):2614. doi:10.3390/polym14132614.
  • Kalsoom U, Khalid N, Ibrahim A, Ashraf SS, Bhatti HN, Ahsan Z, Zdarta J, Bilal M. 2023. Biocatalytic degradation of reactive blue 221 and direct blue 297 dyes by horseradish peroxidase immobilized on iron oxide nanoparticles with improved kinetic and thermodynamic characteristics. Chemosphere. 312(Pt 1):137095. doi:10.1016/j.chemosphere.2022.137095.
  • Karakurt V, Samsa CG. 2023. Immobilization of protease on chitosan–silica gel beads for high detergent and surfactant stability and high tolerance against metallic ions and organic solvents. Chem Pap. 77(6):3361–3372. doi:10.1007/s11696-023-02709-3.
  • Khanmohammadi M, Sakai S, Taya M. 2019. Characterization of encapsulated cells within hyaluronic acid and alginate microcapsules produced via horseradish peroxidase-catalyzed crosslinking. J Biomater Sci Polym Ed. 30(4):295–307. doi:10.1080/09205063.2018.1562637.
  • Krainer FW, Glieder A. 2015. An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol. 99(4):1611–1625. doi:10.1007/s00253-014-6346-7.
  • Kuo CH, Chen BY, Liu YC, Chen JH, Shieh CJ. 2016. Production of resveratrol by piceiddeglycosylation using cellulase. Catalysts. 6(3):32. doi:10.3390/catal6030032.
  • Liu JJ, Kim JG, Kim HB, Abeysinghe S, Lin YW, Baek K. 2023. Covalent immobilizing horseradish peroxidase on electrochemically-functionalized biochar for phenol removal. Chemosphere. 312(Pt 1):137218. doi:10.1016/j.chemosphere.2022.137218.
  • Lopes S, Bueno L, Aguiar FD, Finkler C. 2017. Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. An Acad Bras Cienc. 89(3):1601–1613. doi:10.1590/0001-3765201720170071.
  • Mohamed SA, Al-Harbi MH, Almulaiky YQ, Ibrahim IH, Salah HA, El-Badry MO, Abdel-Aty AM, Fahmy AS, El-Shishtawy RM. 2018. Immobilization of Trichoderma harzianum α-amylase on PPyAgNp/Fe3O4-nanocomposite: chemical and physical properties. Artif Cells Nanomed Biotechnol. 46(sup2):201–206. doi:10.1080/21691401.2018.1453828.
  • Nanayakkara S, Zhao Z, Patti A, He L, Saito K. 2014. Immobilized horseradish peroxidase (i-HRP) as biocatalyst for oxidative polymerization of 2,6-dimethylphenol. ACS Sustainable Chem Eng. 2(8):1947–1950. doi:10.1021/sc500392k.
  • Norouzian D, Javadpour S, Moazami N, Akbarzadeh A. 2002. Immobilization of whole cell penicillin g acylase in open pore gelatin matrix. Enzyme Microb Technol. 30(1):26–29. doi:10.1016/S0141-0229(01)00445-8.
  • Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN. 2017. A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem. 06(01):308. doi:10.4172/2161-1009.1000308.
  • Pylypchuk IV, Daniel G, Kessler VG, Seisenbaeva GA. 2020. Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol–gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nanomaterials. 10(2):282. doi:10.3390/nano10020282.
  • Sadat A, Joye IJ. 2020. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl Sci. 10(17):5918. doi:10.3390/app10175918.
  • Sakai S, Nakahata M. 2017. Horseradish peroxidase catalyzed hydrogelation for biomedical, biopharmaceutical, and biofabrication applications. Chem Asian J. 12(24):3098–3109. doi:10.1002/asia.201701364.
  • Sattar H, Aman A, Qader SAU. 2018. Agar-agar immobilization: an alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. Int J Biol Macromol. 111:917–922. doi:10.1016/j.ijbiomac.2018.01.105.
  • Sheldon RA, Basso A, Brady D. 2021. New frontiers in enzyme immobilization: robust biocatalysts for a circular bio-based economy. Chem Soc Rev. 50(10):5850–5862. doi:10.1039/d1cs00015b.
  • Sheldon RA, Brady D. 2019. Broadening the scope of biocatalysis in sustainable organic synthesis. Chem Sus Chem. 12(13):2859–2881. doi:10.1002/cssc.201900351.
  • Shirazi NH, Rajabi MR. 2023. Spectroscopic analysis of the zinc ion interaction with horseradish peroxidase. J Appl Spectrosc. 90(1):101–107. doi:10.1007/s10812-023-01510-0.
  • Sigurdardóttir SB, Lehmann J, Ovtar S, Grivel JC, Negra MD, Kaiser A, Pinelo M. 2018. Enzyme immobilization on inorganic surfaces for membrane reactor applications: mass transfer challenges, enzyme leakage and reuse of materials. Adv Synth Catal. 360(14):2578–2607. doi:10.1002/adsc.201800307.
  • Suri A, Khandegar V, Kaur PJ. 2021. Ofloxacin exclusion using novel HRP immobilized chitosan cross-link with graphene-oxide nanocomposite. Groundw Sustain Dev. 12:100515. doi:10.1016/j.gsd.2020.100515.
  • Trelles JA, Rivero CW. 2020. Whole cell entrapment techniques. In: Guisan J, Bolivar J, López-Gallego F, Rocha-Martín J. (eds) Immobilization of enzymes and cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. doi:10.1007/978-1-0716-0215-7_25.
  • Unnikrishnan B, Lien CW, Chu HW, Huang CC. 2021. A review on metal nanozyme-based sensing of heavy metal ions: challenges and future perspectives. J Hazard Mater. 401:123397. doi:10.1016/j.jhazmat.2020.123397.
  • Urrea DAM, Gimenez AVF, Rodriguez YE, Contreras EM. 2021. Immobilization of horseradish peroxidase in ca-alginate beads: evaluation of the enzyme leakage on the overall removal of an azo-dye and mathematical modeling. Process Saf Environ Prot. 156:134–143. doi:10.1016/j.psep.2021.10.006.
  • Wang S, Fang H, Yi X, Xu Z, Xie X, Tang Q, Minrui O, Xu X. 2016. Oxidative removal of phenol by hrp-immobilized beads and its environmental toxicology assessment. Ecotoxicol Environ Saf. 130:234–239. doi:10.1016/j.ecoenv2016.04.022.
  • Xie T, Lv X, Tian S, Zhang X, Lv Z, Sun S. 2023. Tailored chitosan-based entrapped catalyst for dyes removal by highly active, stable, and recyclable nanoparticles toughened hydrogel. Int J Biol Macromol. 245:125634. doi:10.1016/j.ijbiomac.2023.125634.
  • Yuan ZY, Jiang TJ. 2002. Horseradish peroxidase. Handbook of food enzymology. Chapter 28, 1st Edition, p. 10. Boca Raton: CRC Press. ISNB:9780429222542.
  • Zhu Y, Chen Q, Shao L, Jia Y, Zhang X. 2020. Microfluidic immobilized enzyme reactors for continuous biocatalysis. React Chem Eng. 5(1):9–32. doi:10.1039/C9RE00217K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.