58
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanomaterials in biology and medicine: a new perspective on its toxicity and applications

, , &
Received 07 Jul 2023, Accepted 02 Apr 2024, Published online: 29 Apr 2024

References

  • Kasana, R. C., Panwar, N. R., Kaul, R. K., & Kumar, P. (2017). Biosynthesis and effects of copper nanoparticles on plants. Environmental Chemistry Letters, 15(2), 233–240. https://doi.org/10.1007/s10311-017-0615-5
  • ‘Health Risk Due to Micro- and Nanoplastics in Food’. (2022). ScienceDaily.
  • Aijie, C., Huimin, L., Jia, L., Lingling, O., Limin, W., Junrong, W., Xuan, L., Xue, H., & Longquan, S. (2017). Central neurotoxicity induced by the instillation of ZnO and TiO2 nanoparticles through the taste nerve pathway. Nanomedicine (London, England), 12(20), 2453–2470. https://doi.org/10.2217/nnm-2017-0171
  • Alavi, M., Hamblin, M. R., & Kennedy, J. F. (2022). Antimicrobial applications of lichens: secondary metabolites and green synthesis of silver nanoparticles: a review. Nano Micro Biosystems, 1(1), 15–21.
  • Alavi, M., Mozafari, M. R., Hamblin, M. R., Hamidi, M., Hajimolaali, M., & Katouzian, I. (2022). Industrial-scale methods for the manufacture of liposomes and nanoliposomes: pharmaceutical, cosmetic, and nutraceutical aspects. Micro Nano Bio Aspects, 1(2), 26–35.
  • Alavi, M., & Yarani, R. (2023). ROS and RNS modulation: the main antimicrobial, anticancer, antidiabetic, and antineurodegenerative mechanisms of metal or metal oxide nanoparticles. Nano Micro Biosystems, 2(1), 22–30.
  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559
  • Anu Mary Ealia, S., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, 032019.https://doi.org/10.1088/1757-899X/263/3/032019
  • Al-Mashta, N. K. (2022). The effect of gold nanoparticles on some reproductive hormones in male in male albino rats Rattus norvegicus. European Chemical Bulletin, 11(4), 107–107.
  • AshaRani, P. V., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290. https://doi.org/10.1021/nn800596w
  • Aslani, F., Bagheri, S., Muhd Julkapli, N., Juraimi, A. S., Hashemi, F. S. G., & Baghdadi, Ali. (2014). Effects of engineered nanomaterials on plants growth: An overview. The Scientific World Journal, 2014, 1–28. https://doi.org/10.1155/2014/641759
  • Barría, C., Brandts, I., Tort, L., Oliveira, M., & Teles, M. (2020). Effect of nanoplastics on fish health and performance: A review. Marine Pollution Bulletin, 151, 110791. https://doi.org/10.1016/j.marpolbul.2019.110791
  • Batool, M., Zafar, M. N., & Nazar, M. F. (2022). General regulations for safe handling of manufactured nanomaterials. In Nanomaterials recycling (pp. 61–82). Elsevier. https://doi.org/10.1016/B978-0-323-90982-2.00004-4
  • Behravan, M., Hossein Panahi, A., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101
  • Bendale, Y., Bendale, V., & Paul, S. (2017). Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integrative Medicine Research, 6(2), 141–148. https://doi.org/10.1016/j.imr.2017.01.006
  • Besseling, E., Redondo-Hasselerharm, P., Foekema, E. M., & Koelmans, A. A. (2019). Quantifying ecological risks of aquatic micro- and nanoplastic. Critical Reviews in Environmental Science and Technology, 49(1), 32–80. https://doi.org/10.1080/10643389.2018.1531688
  • Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13. https://doi.org/10.1016/j.gene.2004.04.032
  • Bouwmeester, H., van der Zande, M., & Jepson, M. A. (2018). Effects of food‐borne nanomaterials on gastrointestinal tissues and microbiota. WIREs Nanomedicine and Nanobiotechnology, 10(1), e1481. https://doi.org/10.1002/wnan.1481
  • Brewer, A., Dror, I., & Berkowitz, B. (2021). The mobility of plastic nanoparticles in aqueous and soil environments: A critical review. ACS ES&T Water, 1(1), 48–57. https://doi.org/10.1021/acsestwater.0c00130
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690 20419892
  • Canales-Lizaola, M., Arellano, J. S., & Magaña, L. F. (2019). Hydrogen molecule adsorption on a Ti-doped graphene+ semi-fullerene surface. Journal of Physics: Conference Series, 1221(1), 012081.https://doi.org/10.1088/1742-6596/1221/1/012081
  • Canesi, L., & Corsi, I. (2016). Effects of nanomaterials on marine invertebrates. Science of the Total Environment, 565, 933–940. https://doi.org/10.1016/j.scitotenv.2016.01.085
  • Casey, A., Herzog, E., Davoren, M., Lyng, F. M., Byrne, H. J., & Chambers, G. (2007). Spectroscopic analysis confrms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon, 45(7), 1425–1432. https://doi.org/10.1016/j.carbon.2007.03.033
  • Chan, J. M., Valencia, P. M., Zhang, L., Langer, R., & Farokhzad, O. C. (2010). Polymeric nanoparticles for drug delivery. Methods in Molecular Biology (Clifton, N.J.), 624, 163–175. https://doi.org/10.1007/978-1-60761-609-2_11 20217595
  • Chandrasekharan, S., Chinnasamy, G., & Bhatnagar, S. (2022). Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-021-04025-w
  • Chen, Y.-T., Lue, P.-Y., Chen, P.-W., Chueh, P.-J., Tsai, F.-J., & Liao, J.-W. (2021). Comparison of genotoxicity and pulmonary toxicity study of modified SiO2 nanomaterials. Applied Sciences, 11(24), 11990. https://doi.org/10.3390/app112411990
  • Cho, S., Lee, B., Park, W., Huang, X., & Kim, D.-H. (2018). Photoperiodic flower mimicking metallic nanoparticles for image-guided medicine applications. ACS Applied Materials & Interfaces, 10(33), 27570–27577. https://doi.org/10.1021/acsami.8b09596
  • De La Cruz, G. G., Rodríguez-Fragoso, P., Reyes-Esparza, J., Rodríguez-López, A., Gómez-Cansino, R., & Rodriguez-Fragoso, L. (2018). Interaction of nanoparticles with blood components and associated pathophysiological effects. In Unraveling the safety profile of nanoscale particles and materials-from biomedical to environmental applications.
  • De Matteis, V. (2017). Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 5(4), 29.https://doi.org/10.3390/toxics5040029
  • Deng, Y., Yang, F., Cocco, E., Song, E., Zhang, J., Cui, J., Mohideen, M., Bellone, S., Santin, A. D., & Saltzman, W. M. (2016). Improved i.p. drug delivery with bioadhesive nanoparticles. Proceedings of the National Academy of Sciences, 113(41), 11453–11458. https://doi.org/10.1073/pnas.1523141113
  • Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95. https://doi.org/10.1152/physrev.00018.2001
  • Dziendzikowska, K., Węsierska, M., Gromadzka-Ostrowska, J., Wilczak, J., Oczkowski, M., Męczyńska-Wielgosz, S., & Kruszewski, M. (2021). Silver nanoparticles impair cognitive functions and modify the hippocampal level of neurotransmitters in a coating-dependent manner. International Journal of Molecular Sciences, 22(23), 12706. https://doi.org/10.3390/ijms222312706
  • Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Hegazy, A. K., & Musarrat, J. (2013). Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death. Journal of Hazardous Materials, 250–251, 318–332. https://doi.org/10.1016/j.jhazmat.2013.01.063
  • Fiorito, S., Serafino, A., Andreola, F., & Bernier, P. (2006). Efects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon, 44(6), 1100–1105. https://doi.org/10.1016/j.carbon.2005.11.009
  • Froushani, S. M. A., Zamani, A., & Abbasi, A. (2021). Cytotoxic effects of combined walnut shell-extracted copper oxide: nanoparticles and hydroalcoholic extracts of aloe vera against human leukemic cell line. Zahedan Journal of Research in Medical Sciences, 23(1). https://doi.org/10.5812/zjrms.94572
  • Ghosh, M., Jana, A., Sinha, S., Jothiramajayam, M., Nag, A., Chakraborty, A., Mukherjee, A., & Mukherjee, A. (2016). Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 807, 25–32. https://doi.org/10.1016/j.mrgentox.2016.07.006
  • Gradishar, W. J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., Hawkins, M., & O’Shaughnessy, J. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. Journal of Clinical Oncology, 23(31), 7794–7803. https://doi.org/10.1200/JCO.2005.04.937
  • Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263(5153), 1600–1603. https://doi.org/10.1126/science.8128245
  • Gupta, R., & Xie, H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology: Official Organ of the International Society for Environmental Toxicology and Cancer, 37(3), 209–230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009 30317972
  • Hamad, A., Khashan, K. S., & Hadi, A. (2020). Silver nanoparticles and silver ions as potential antibacterial agents. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 4811–4828.
  • Harries, M., Ellis, P., & Harper, P. (2005). Nanoparticle albumin–bound paclitaxel for metastatic breast cancer. Journal of Clinical Oncology, 23(31), 7768–7771. https://doi.org/10.1200/JCO.2005.08.002
  • Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T. J., & Marei, H. E. (2018). Nanoparticles in tissue engineering: applications, challenges, and prospects. International Journal of Nanomedicine, 13, 5637–5655. https://doi.org/10.2147/IJN.S153758
  • Hawkins, M. J., Soon-Shiong, P., & Desai, N. (2008). Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 60(8), 876–885. https://doi.org/10.1016/j.addr.2007.08.044
  • Hawthorne, J., Musante, C., Sinha, S. K., & White, J. C. (2012). Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. International Journal of Phytoremediation, 14(4), 429–442. https://doi.org/10.1080/15226514.2011.620903
  • Horie, M., & Tabei, Y. (2021). Role of oxidative stress in nanoparticles toxicity. Free Radical Research, 55(4), 331–342. https://doi.org/10.1080/10715762.2020.1859108
  • Hotaling, N. A., Tang, L., Irvine, D. J., & Babensee, J. E. (2015). Biomaterial strategies for immunomodulation. Annual Review of Biomedical Engineering, 17(1), 317–349. https://doi.org/10.1146/annurev-bioeng-071813-104814
  • Huang, T., Holden, J. A., Heath, D. E., O’Brien-Simpson, N. M., & O’Connor, A. J. (2019). Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 11(31), 14937–14951. https://doi.org/10.1039/c9nr04424h
  • Innocenzi, P., & Stagi, L. (2020). Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chemical Science, 11(26), 6606–6622. https://doi.org/10.1039/d0sc02658a
  • Jain, S., & Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15724-8
  • Kamel, R. H. and AL-Taee, A.A. (2020). Effect of iron oxide nanopartical on the FSH, LH and testesteron hormones in the offspring of albino rats. Indian Journal of Forensic Medicine & Toxicology, https://doi.org/10.37506/ijfmt.v14i1.189
  • Katarzyńska-Banasik, D., Grzesiak, M., Kowalik, K., & Sechman, A. (2021). Administration of silver nanoparticles affects ovarian steroidogenesis and may influence thyroid hormone metabolism in hens (Gallus domesticus). Ecotoxicology and Environmental Safety, 208, 111427. https://doi.org/10.1016/j.ecoenv.2020.111427
  • Katti, K. S., Jasuja, H., Jaswandkar, S. V., Mohanty, S., & Katti, D. R. (2022). Nanoclays in medicine: a new frontier of an ancient medical practice. Materials Advances, 3(20), 7484–7500. https://doi.org/10.1039/d2ma00528j 36324871
  • Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R., & Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science (New York, N.Y.), 339(6124), 1213–1216. https://doi.org/10.1126/science.1232688
  • Khalaf, A. A., Hassanen, E. I., Azouz, R. A., Zaki, A. R., Ibrahim, M. A., Farroh, K. Y., & Galal, M. K. (2019). Ameliorative effect of zinc oxide nanoparticles against dermal toxicity induced by lead oxide in rats. International Journal of Nanomedicine, 14, 7729–7741. https://doi.org/10.2147/ijn.s220572
  • Khan, F., Shariq, M., Asif, M., Siddiqui, M. A., Malan, P., & Ahmad, F. (2022). Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials (Basel, Switzerland), 12(4), 673. https://doi.org/10.3390/nano12040673
  • Kim, S. C., Kim, D. W., Shim, Y. H., Bang, J. S., Oh, H. S., Wan Kim, S., & Seo, M. H. (2001). In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efcacy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 72(1–3), 191–202. https://doi.org/10.1016/s0168-3659(01)00275-9
  • Kim, Y. H., Kwak, K. A., Kim, T. S., Seok, J. H., Roh, H. S., Lee, J.-K., Jeong, J., Meang, E. H., Hong, J.-S., Lee, Y. S., & Kang, J. S. (2015). Retinopathy induced by zinc oxide nanoparticles in rats assessed by micro-computed tomography and histopathology. Toxicological Research, 31(2), 157–163. https://doi.org/10.5487/tr.2015.31.2.157
  • Kittler, S., Greulich, C., Diendorf, J., Köller, M., & Epple, M. (2010). Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chemistry of Materials, 22(16), 4548–4554. https://doi.org/10.1021/cm100023p
  • Knudsen, K. B., Berthing, T., Jackson, P., Poulsen, S. S., Mortensen, A., Jacobsen, N. R., Skaug, V., Szarek, J., Hougaard, K. S., Wolff, H., Wallin, H., & Vogel, U. (2019). Physicochemical predictors of multi‐walled carbon nanotube–induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different multi‐walled carbon nanotubes in mice. Basic & Clinical Pharmacology & Toxicology, 124(2), 211–227. https://doi.org/10.1111/bcpt.13119
  • Ko, N. R., Hong, S. H., Nafiujjaman, Md., An, S. Y., Revuri, V., Lee, S. J., Kwon, I. K., Lee, Y-k., & Oh, S. J. (2019). Glutathione-responsive PEGylated GQD-based nanomaterials for diagnosis and treatment of breast cancer. Journal of Industrial and Engineering Chemistry, 71, 301–307. https://doi.org/10.1016/j.jiec.2018.11.039
  • Laloy, J., Minet, V., Alpan, L., Mullier, F., Beken, S., Toussaint, O., Lucas, S., & Dogné, J.-M. (2014). Impact of silver nanoparticles on haemolysis, platelet function and coagulation. Nanobiomedicine, 1, 4. https://doi.org/10.5772/59346
  • Lan, J. (2022). Overview of Application of Nanomaterials in Medical Domain. Contrast Media & Molecular Imaging, 2022, 1–5. 10.1155/2022/3507383
  • Lankoff, A., Arabski, M., Wegierek-Ciuk, A., Kruszewski, M., Lisowska, H., Banasik-Nowak, A., Rozga-Wijas, K., Wojewodzka, M., & Slomkowski, S. (2013). Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology, 7(3), 235–250. https://doi.org/10.3109/17435390.2011.649796
  • Latif, M. A., Jabeen, F., Ali, M., Rasul, A., Naz, S., & Akram, M. (2019). Neurotoxic effects of titanium dioxide nanoparticles on the brain of male sprague dawley rats. Pakistan Journal of Pharmaceutical Sciences, 32(5(Supplementary), 2311–2316.
  • Lee, H., Kim, S., Hwang, K. S., Lim, N. R., Oh, H. B., Cho, I.-J., Kim, J., Kim, K. H., & Kim, H. N. (2021). Effect of carbon nanomaterial dimension on the functional activity and degeneration of neurons. Biomaterials, 279(, 121232. https://doi.org/10.1016/j.biomaterials.2021.121232
  • Lee, A.-R., Lee, S.-J., Lee, M., Nam, M., Lee, S., Choi, J., Lee, H.-J., Kim, D.-U., & Hoe, K.-L. (2018). Editor’s highlight: A genome-wide screening of target genes against silver nanoparticles in fission yeast. Toxicological Sciences: An Official Journal of the Society of Toxicology, 161(1), 171–185. https://doi.org/10.1093/toxsci/kfx208
  • Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., & Xu, X.-H N. (2007). In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 1(2), 133–143. https://doi.org/10.1021/nn700048y
  • Li, R., Cui, L., Chen, M., & Huang, Y. (2021). Nanomaterials for airborne virus inactivation: A short review. Aerosol Science and Engineering, 5(1), 1–11. https://doi.org/10.1007/s41810-020-00080-4
  • Li, G.-Y., & Osborne, N. N. (2008). Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Research, 1188, 35–43. https://doi.org/10.1016/j.brainres.2007.10.073
  • Liu, Y., Gao, Y., Liu, Y., Li, B., Chen, C., & Wu, G. (2014). Oxidative stress and acute changes in Murine brain tissues after nasal instillation of copper particles with different sizes. Journal of Nanoscience and Nanotechnology, 14(6), 4534–4540. https://doi.org/10.1166/jnn.2014.8290
  • Liu, Z., Liu, S., Ren, G., Zhang, T., & Yang, Z. (2011). Nano‐CuO inhibited voltage‐gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G‐proteins pathway. Journal of Applied Toxicology: Jat, 31(5), 439–445. https://doi.org/10.1002/jat.1611
  • Liu, J., Yang, L., & Hopfinger, A. J. (2009). Affinity of drugs and small biologically active molecules to carbon nanotubes: A pharmacodynamics and nanotoxicity factor? Molecular Pharmaceutics, 6(3), 873–882. https://doi.org/10.1021/mp800197v
  • Low, S. P., Williams, K. A., Canham, L. T., & Voelcker, N. H. (2006). Evaluation of mammalian cell adhesion on surface-modifed porous silicon. Biomaterials, 27(26), 4538–4546. https://doi.org/10.1016/j.biomaterials.2006.04.015
  • Lozano, O., Silva-Platas, C., Chapoy-Villanueva, H., Pérez, B. E., Lees, J. G., Ramachandra, C. J. A., Contreras-Torres, F. F., Lázaro-Alfaro, A., Luna-Figueroa, E., Bernal-Ramírez, J., Gordillo-Galeano, A., Benitez, A., Oropeza-Almazán, Y., Castillo, E. C., Koh, P. L., Hausenloy, D. J., Lim, S. Y., & García-Rivas, G. (2020). Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Particle and Fibre Toxicology, 17(1), 15. https://doi.org/10.1186/s12989-020-00346-2
  • Luabi, N. M., Zayed, N. A., & Ali, L. Q. (2019). Zinc oxide nanoparticles effect on thyroid and testosterone hormones in male rats. Journal of Physics: Conference Series, 1294(6), 062034. https://doi.org/10.1088/1742-6596/1294/6/062034
  • Lyu, Z., Ghoshdastidar, S., Rekha, K. R., Suresh, D., Mao, J., Bivens, N., Kannan, R., Joshi, T., Rosenfeld, C. S., & Upendran, A. (2021). Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Scientific Reports, 11(1), 6558. https://doi.org/10.1038/s41598-021-85919-7
  • MacCormack, T. J., & Goss, G. G. (2008). Identifying and predicting biological risks associated with manufactured nanoparticles in aquatic ecosystems. Journal of Industrial Ecology, 12(3), 286–296. https://doi.org/10.1111/j.1530-9290.2008.00041.x
  • Madani, M., Hosny, S., Alshangiti, D. M., Nady, N., Alkhursani, S. A., Alkhaldi, H., Al-Gahtany, S. A., Ghobashy, M. M., & Gaber, G. A. (2022). Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes. Nanotechnology Reviews, 11(1), 731–759. https://doi.org/10.1515/ntrev-2022-0034
  • Magder, S. (2006). Reactive oxygen species: toxic molecules or spark of life? Critical Care (London, England), 10(1), 208 https://doi.org/10.1186/cc3992
  • Maksimović, M., Omanović-Mikličanin, E. (2017). Towards green nanotechnology: Maximizing benefits and minimizing harm. In IFMBE Proceedings (pp. 164—170.). Springer.
  • Marshall, N. J., Goodwin, C. J., & Holt, S. J. (1995). A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regulation, 5(2), 69–84.
  • Materić, D., Kasper-Giebl, A., Kau, D., Anten, M., Greilinger, M., Ludewig, E., van Sebille, E., Röckmann, T., & Holzinger, R. (2020). Micro- and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range. Environmental Science & Technology, 54(4), 2353–2359. https://doi.org/10.1021/acs.est.9b07540
  • Mazumdar, H., & Ahmed, G. U. (2011). Phytotoxicity effect of silver nanoparticles on Oryza sativa. International Journal of ChemTech Research, 3(3), 1494–1500.
  • Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M., & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety, 88, 48–54. https://doi.org/10.1016/j.ecoenv.2012.10.018
  • Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. The Science of the Total Environment, 438, 225–232. https://doi.org/10.1016/j.scitotenv.2012.08.066
  • Mohamed, E. A. (2020). Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon, 6(1), e03123 https://doi.org/10.1016/j.heliyon.2019.e03123
  • Montiel-Dávalos, A., Silva Sánchez, G. J., Huerta-García, E., Rueda-Romero, C., Soca Chafre, G., Mitre-Aguilar, I. B., Alfaro-Moreno, E., Pedraza-Chaverri, J., & López-Marure, R. (2017). Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells. PloS One, 12(12), e0188169 https://doi.org/10.1371/journal.pone.0188169
  • Moumaris, M., Bretagne, J.-M., & Abuaf, N. (2020). Nanomedical devices and cancer theranostics. The Open Nanomedicine and Nanotechnology Journal, 6(1), 1–11. https://doi.org/10.2174/2666150002006010001
  • Nasirzadeh, N., Azari, M. R., Rasoulzadeh, Y., & Mohammadian, Y. (2019). An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicology and Industrial Health, 35(1), 79–87. https://doi.org/10.1177/0748233718817180
  • Nasrollahzadeh, M., Sajadi, S. M., Issaabadi, Z., & Sajjadi, M. (2019). Biological sources used in green nanotechnology. In Interface science and technology (pp. 81–111). Elsevier.
  • Nazbeen, N., & Wang, Q. (2016). Guidelines and best practices for safe handling of nanomaterials in research laboratories and industries. A Project of ARCI.
  • Nekrasova, G. F., Ushakova, O. S., Ermakov, A. E., Uimin, M. A., & Byzov, I. V. (2011). Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology, 42(6), 458–463. https://doi.org/10.1134/S1067413611060117
  • Noor, N. A., Fahmy, H. M., & Mourad, I. M. (2016). Evaluation of the potential neurotoxicity of gold nanoparticles in the different rat brain regions. International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 5, 114–129
  • Omlor, A. J., Nguyen, J., Bals, R., & Dinh, Q. T. (2015). Nanotechnology in respiratory medicine. Respiratory Research, 16(1), 1–9. https://doi.org/10.1186/s12931-015-0223-5
  • Onoda, A., Umezawa, M., Takeda, K., Ihara, T., & Sugamata, M. (2014). Effects of maternal exposure to ultrafine carbon black on brain perivascular macrophages and surrounding astrocytes in offspring mice. PloS One, 9(4), e94336. https://doi.org/10.1371/journal.pone.0094336
  • Palmer, B. C., & DeLouise, L. A. (2020). Morphology-dependent titanium dioxide nanoparticle-induced keratinocyte toxicity and exacerbation of allergic contact dermatitis. Toxicology: Current Research, 4(1), 1–7. https://doi.org/10.24966/TCR-3735/100019
  • Palmer, B. C., Phelan-Dickenson, S. J., & DeLouise, L. A. (2019). Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Particle and Fibre Toxicology, 16, 3. https://doi.org/10.1186/s12989-018-0285-x
  • Park, J., Park, C., Lee, Y., Ryu, C., Park, J., & Kim, Y. (2022). Acute adverse effects of metallic nanomaterials on cardiac and behavioral changes in Daphnia magna. Environments, 9(2), 26 https://doi.org/10.3390/environments9020026
  • Pem, B., Ćurlin, M., Domazet Jurašin, D., Vrček, V., Barbir, R., Micek, V., Fratila, R. M., de la Fuente, J. M., & Vinković Vrček, I. (2021). Fate and transformation of silver nanoparticles in different biological conditions. Beilstein Journal of Nanotechnology, 12, 665–679. https://doi.org/10.3762/bjnano.12.53
  • Pereira, M. C., Adewale, O. B., Roux, S., Cairncross, L., & Davids, H. (2021). Biochemical assessment of the neurotoxicity of gold nanoparticles functionalized with colorectal cancer-targeting peptides in a rat model. Human & Experimental Toxicology, 40(11), 1962–1973. https://doi.org/10.1177/09603271211017611
  • Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A, R., Rajesh, K., & Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211. 128107. https://doi.org/10.1016/j.molstruc.2020.128107
  • Preenanka, R., & Sebastian, D. (2022). Characterization of green synthesized antibacterial silver nanoparticles from Amaranthus spinosus L. extract. BioNanoScience, 12(2), 502–511. https://doi.org/10.1007/s12668-022-00965-3
  • Punshon, G., Vara, D. S., Sales, K. M., Kidane, A. G., Salacinski, H. J., & Seifalian, A. M. (2005). Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane. Biomaterials, 26(32), 6271–6279. https://doi.org/10.1016/j.biomaterials.2005.03.034
  • Radwan-Pragłowska, J., Janus, Ł., Piątkowski, M., Bogdał, D., & Matýsek, D. (2020). Hybrid bilayer PLA/Chitosan nanofibrous scaffolds doped with ZnO, Fe3O4, and Au nanoparticles with bioactive properties for skin tissue engineering. Polymers, 12(1), 159.https://doi.org/10.3390/polym12010159
  • Rajitha, P., Gopinath, D., Biswas, R., Sabitha, M., & Jayakumar, R. (2016). Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opinion on Drug Delivery, 13(8), 1177–1194. https://doi.org/10.1080/17425247.2016.1178232
  • Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78 https://doi.org/10.3389/fchem.2017.00078
  • Rathore, H. S., Sivagnanam, U. T., Abraham, L. S., Prakash, D., Panda, R. C., & Senthilvelan, T. (2022). Green synthesized silver nanoparticles-impregnated novel gum kondagogu–chitosan biosheet for tissue engineering and wound healing applications. Polymer Bulletin, 79(9), 7215–7227. https://doi.org/10.1007/s00289-021-03832-5
  • Rautela, A., Rani, J., & Debnath (Das), M. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10(1). https://doi.org/10.1186/s40543-018-0163-z
  • Reddy, S. T., van der Vlies, A. J., Simeoni, E., Angeli, V., Randolph, G. J., O’Neil, C. P., Lee, L. K., Swartz, M. A., & Hubbell, J. A. (2007). Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 25(10), 1159–1164. https://doi.org/10.1038/nbt1332
  • Riasat, R., & Guangjun, N. (2016). Effects of nanoparticles on gastrointestinal disorders and therapy. Journal of Clinical Toxicology, 6(4), 126988. https://doi.org/10.4172/2161-0495.1000313
  • Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., & Choi, A. M. K. (2007). Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling, 9(1), 49–89. https://doi.org/10.1089/ars.2007.9.49
  • Salavati-Niasari, M., Davar, F., & Mir, N. (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 27(17), 3514–3518. https://doi.org/10.1016/j.poly.2008.08.020
  • Salvioni, L., Morelli, L., Ochoa, E., Labra, M., Fiandra, L., Palugan, L., Prosperi, D., & Colombo, M. (2021). The emerging role of nanotechnology in skincare. Advances in Colloid and Interface Science, 293, 102437. https://doi.org/10.1016/j.cis.2021.102437
  • Sathyanarayana, S., & Hübner, C. (2013). Thermoplastic nanocomposites with carbon nanotubes. In Structural nanocomposites (pp. 19–60). Springer.
  • Saxena, P., Saharan, V., Baroliya, P. K., Gour, V. S., Rai, M. K., & Harish. (2021). Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicology Reports, 8, 724–731. https://doi.org/10.1016/j.toxrep.2021.03.023
  • Sayes, C. M., Reed, K. L., & Warheit, D. B. (2007). Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences: An Official Journal of the Society of Toxicology, 97(1), 163–180. https://doi.org/10.1093/toxsci/kfm018
  • Seabra, A. B., Paula, A. J., De Lima, R., Alves, O. L., & Durán, N. (2014). Nanotoxicity of graphene and graphene oxide. Chemical Research in Toxicology, 27(2), 159–168. https://doi.org/10.1021/tx400385x
  • Shin, H. K., Seo, M., Shin, S. E., Kim, K.-Y., Park, J.-W., & No, K. T. (2018). Meta-analysis of Daphnia magna nanotoxicity experiments in accordance with test guidelines. Environmental Science: Nano, 5(3), 765–775. https://doi.org/10.1039/C7EN01127J
  • Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1), 1–24. https://doi.org/10.1186/s12951-018-0408-4
  • Soares, C., Branco-Neves, S., de Sousa, A., Pereira, R., & Fidalgo, F. (2016). Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: Combining standardized procedures and physiological endpoints. Chemosphere, 165, 442–452. https://doi.org/10.1016/j.chemosphere.2016.09.053
  • Söderstjerna, E., Bauer, P., Cedervall, T., Abdshill, H., Johansson, F., & Johansson, U. E. (2014). Silver and gold nanoparticles exposure to in vitro cultured retina – Studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PloS One, 9(8), e105359. https://doi.org/10.1371/journal.pone.0105359
  • Sonwani, S., Madaan, S., Arora, J., Suryanarayan, S., Rangra, D., Mongia, N., Vats, T., & Saxena, P. (2021). Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: A review. Frontiers in Sustainable Cities, 3, 690444. https://doi.org/10.3389/frsc.2021.690444
  • Sun, T., Kang, Y., Liu, J., Zhang, Y., Ou, L., Liu, X., Lai, R., & Shao, L. (2021). Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. Journal of Nanobiotechnology, 19(1), 108. https://doi.org/10.1186/s12951-021-00843-2
  • Szebeni, J., & Storm, G. (2015). Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochemical and Biophysical Research Communications, 468(3), 490–497. https://doi.org/10.1016/j.bbrc.2015.06.177
  • Ter Halle, A., Jeanneau, L., Martignac, M., Jardé, E., Pedrono, B., Brach, L., & Gigault, J. (2017). Nanoplastic in the north Atlantic subtropical gyre. Environmental Science & Technology, 51(23), 13689–13697. https://doi.org/10.1021/acs.est.7b03667
  • Torres Sangiao, E., Holban, A. M., & Gestal, M. C. (2019). Applications of nanodiamonds in the detection and therapy of infectious diseases. Materials, 12(10), 1639.https://doi.org/10.3390/ma12101639
  • Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., Prasad, S. M., Singh, P. K., Dubey, N. K., Pandey, A. C., & Chauhan, D. K. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry: Ppb, 110, 167–177. https://doi.org/10.1016/j.plaphy.2016.06.015
  • Umaralikhan, L., & Jamal Mohamed Jaffar, M. (2018). Green synthesis of MgO nanoparticles and it antibacterial activity. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 477–485. https://doi.org/10.1007/s40995-016-0041-8
  • Utembe, W., Potgieter, K., Stefaniak, A. B., & Gulumian, M. (2015). Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Particle and Fibre Toxicology, 12(1). https://doi.org/10.1186/s12989-015-0088-2
  • Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141(2), 384–390. https://doi.org/10.1104/pp.106.078295
  • Vazquez-Muñoz, R., Borrego, B., Juárez-Moreno, K., García-García, M., Mota Morales, J. D., Bogdanchikova, N., & Huerta-Saquero, A. (2017). Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicology Letters, 276, 11–20. https://doi.org/10.1016/j.toxlet.2017.05.007
  • Verma, A., Gautam, S., Bansal, K., Prabhakar, N., & Rosenholm, J. (2019). Green nanotechnology: Advancement in phytoformulation research. Medicines (Basel, Switzerland), 6(1), 39 https://doi.org/10.3390/medicines6010039
  • Wang, A. Z., Gu, F., Zhang, L., Chan, J. M., Radovic-Moreno, A., Shaikh, M. R., & Farokhzad, O. C. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 8(8), 1063–1070. https://doi.org/10.1517/14712598.8.8.1063 18613759
  • Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology: Quantitative Biosciences from Nano to Macro, 6(1), 9–26. https://doi.org/10.1039/c3ib40165k 24104563
  • Yang, Y., Du, X., Wang, Q., Liu, J., Zhang, E., Sai, L., Peng, C., Lavin, M., Yeo, A., Yang, X., Shao, H., & Du, Z. (2019). Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. International Journal of Molecular Medicine, 44(3), 903–912. https://doi.org/10.3892/ijmm.2019.4265
  • Yehia, H. N., Draper, R. K., Mikoryak, C., Walker, E. K., Bajaj, P., Musselman, I. H., Daigrepont, M. C., Dieckmann, G. R., & Pantano, P. (2007). Single-walled carbon nanotube interactions with HeLa cells. Journal of Nanobiotechnology, 5(1), 8. https://doi.org/10.1186/1477-3155-5-8
  • Yoshioka, Y., Kuroda, E., Hirai, T., Tsutsumi, Y., & Ishii, K. J. (2017). Allergic responses induced by the immunomodulatory effects of nanomaterials upon skin exposure. Frontiers in Immunology, 8, 169 https://doi.org/10.3389/fimmu.2017.00169
  • Yousef, M., Abuzreda, A., & Kamel, M. (2019). Cardiotoxicity and lung toxicity in male rats induced by long-term exposure to iron oxide and silver nanoparticles. Experimental and Therapeutic Medicine, 18(6), 4329–4339. https://doi.org/10.3892/etm.2019.8108
  • Yu, L., Luo, Z., Chen, T., Ouyang, Y., Xiao, L., Liang, S., Peng, Z., Liu, Y., & Deng, Y. (2022). Bioadhesive nanoparticles for local drug delivery. International Journal of Molecular Sciences, 23(4), 2370.https://doi.org/10.3390/ijms23042370
  • Yuan, Z.-Y., Hu, Y.-L., & Gao, J.-Q. (2015). Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PloS One, 10(8), e0134722. https://doi.org/10.1371/journal.pone.0134722
  • Zhu, S., Gong, L., Li, Y., Xu, H., Gu, Z., & Zhao, Y. (2019). Safety assessment of nanomaterials to eyes: An important but neglected issue. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 6(16), 1802289. https://doi.org/10.1002/advs.201802289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.