68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quercetin prevents methylmercury-induced mitochondrial dysfunction in the cerebral cortex of mice

, , , & ORCID Icon
Received 26 Aug 2023, Accepted 06 Apr 2024, Published online: 22 Apr 2024

References

  • Abate, M., Festa, A., Falco, M., Lombardi, A., Luce, A., Grimaldi, A., Zappavigna, S., Sperlongano, P., Irace, C., Caraglia, M., & Misso, G. (2020). Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell & Developmental Biology, 98, 139–153. https://doi.org/10.1016/j.semcdb.2019.05.022
  • Adebayo, M., Singh, S., Singh, A. P., & Dasgupta, S. (2021). Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB Journal, 35(6), e21620. https://doi.org/10.1096/fj.202100067R
  • Adedara, I. A., Ego, V. C., Subair, T. I., Oyediran, O., & Farombi, E. O. (2017). Quercetin improves neurobehavioral performance through restoration of brain antioxidant status and acetylcholinesterase activity in manganese-treated rats. Neurochemical Research, 42(4), 1219–1229. https://doi.org/10.1007/s11064-016-2162-z
  • Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch-Ernst, K. I., & Lampen, A. (2018). Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research, 62(1). https://doi.org/10.1002/mnfr.201700447
  • Bader, V., & Winklhofer, K. F. (2020). Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell & Developmental Biology, 99, 163–171. https://doi.org/10.1016/j.semcdb.2019.05.028
  • Barcelos, G. R. M., Grotto, D., Serpeloni, J. M., Angeli, J. P. F., Rocha, B. A., de Oliveira Souza, V. C., Vicentini, J. T., Emanuelli, T., Bastos, J. K., Antunes, L. M. G., Knasmüller, S., & Barbosa, F., Jr. (2011). Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats. Archives of Toxicology, 85(9), 1151–1157. https://doi.org/10.1007/s00204-011-0652-y
  • Bock, F. J., & Tait, S. W. G. (2020). Mitochondria as multifaceted regulators of cell death. Nature Reviews. Molecular Cell Biology, 21, 85–100. https://doi.org/10.1038/s41580-019-0173-8
  • Bose, A., & Beal, M F. (2016). Mitochondrial dysfunction in Parkinson’s disease. Journal of Neurochemistry, 139 Suppl. 1, 216–231. https://doi.org/10.1111/jnc.13731
  • Carocci, A., Rovito, N., Sinicropi, M S., & Genchi, G. (2014). Mercury toxicity and neurodegenerative effects. Reviews of Environmental Contamination and Toxicology, 229, 1–18. https://doi.org/10.1007/978-3-319-03777-6_1
  • Chandrasekaran, K., Anjaneyulu, M., Choi, J., Kumar, P., Salimian, M., Ho, C. Y., & Russell, J. W. (2019). Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD-dependent SIRT1–PGC-1α–TFAM pathway. International Review of Neurobiology, 145, 177–209.
  • Cong, L., Lei, M.-Y., Liu, Z.-Q., Liu, Z.-F., Ma, Z., Liu, K., Li, J., Deng, Y., Liu, W., & Xu, B. (2021). Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food and Chemical Toxicology, 153, 112283. https://doi.org/10.1016/j.fct.2021.112283
  • Costa, L. G., Garrick, J. M., Roquè, P. J., & Pellacani, C. (2016). Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxidative Medicine and Cellular Longevity, 2016, 2986796. https://doi.org/10.1155/2016/2986796
  • de Oliveira, M. R., Nabavi, S. M., Braidy, N., Setzer, W. N., Ahmed, T., & Nabavi, S. F. (2016). Quercetin and the mitochondria: A mechanistic view. Biotechnology Advances, 34(5), 532–549. https://doi.org/10.1016/j.biotechadv.2015.12.014
  • Donmez, G., & Outeiro, T. F. (2013). SIRT1 and SIRT2: Emerging targets in neurodegeneration. EMBO Molecular Medicine, 5(3), 344–352. https://doi.org/10.1002/emmm.201302451
  • Farina, M., & Aschner, M. (2019). Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochimica et Biophysica Acta. General Subjects, 1863(12), 129285. https://doi.org/10.1016/j.bbagen.2019.01.007
  • Forte, M., Schirone, L., Ameri, P., Basso, C., Catalucci, D., Modica, J., Chimenti, C., Crotti, L., Frati, G., Rubattu, S., Schiattarella, G. G., Torella, D., Perrino, C., Indolfi, C., & Sciarretta, S., Italian Society of Cardiology Working group on Cellular and Molecular Biology of the Heart. (2021). The role of mitochondrial dynamics in cardiovascular diseases. British Journal of Pharmacology, 178(10), 2060–2076. https://doi.org/10.1111/bph.15068
  • Granitzer, S., Widhalm, R., Forsthuber, M., Ellinger, I., Desoye, G., Hengstschläger, M., Zeisler, H., Salzer, H., & Gundacker, C. (2021). Amino acid transporter LAT1 (SLC7A5) mediates MeHg-induced oxidative stress defense in the human placental cell line HTR-8/SVneo. International Journal of Molecular Sciences, 22(4), 1707. https://doi.org/10.3390/ijms22041707
  • Hsu, M.-Y., Hsiao, Y.-P., Lin, Y.-T., Chen, C., Lee, C.-M., Liao, W.-C., Tsou, S.-C., Lin, H.-W., & Chang, Y.-Y. (2021). Quercetin alleviates the accumulation of superoxide in sodium iodate-induced retinal autophagy by regulating mitochondrial reactive oxygen species homeostasis through enhanced deacetyl-SOD2 via the Nrf2–PGC-1α–Sirt1 pathway. Antioxidants, 10(7), 1125. https://doi.org/10.3390/antiox10071125
  • Hu, Y., Gui, Z., Zhou, Y., Xia, L., Lin, K., & Xu, Y. (2019). Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radical Biology & Medicine, 145, 146–160. https://doi.org/10.1016/j.freeradbiomed.2019.09.024
  • Huang, S. S. Y., Noble, S., Godoy, R., Ekker, M., & Chan, H. M. (2016). Delayed effects of methylmercury on the mitochondria of dopaminergic neurons and developmental toxicity in zebrafish larvae (Danio rerio). Aquatic Toxicology, 175, 73–80. https://doi.org/10.1016/j.aquatox.2016.03.004
  • Jenner, A., Peña-Blanco, A., Salvador-Gallego, R., Ugarte-Uribe, B., Zollo, C., Ganief, T., Bierlmeier, J., Mund, M., Lee, J. E., Ries, J., Schwarzer, D., & Macek, B.-S A. J. (2022). DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO Journal., 41, e108587.
  • Jiao, F., & Gong, Z. (2020). The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxidative Medicine and Cellular Longevity, 2020, 6782872.
  • Joshi, A. U., Ebert, A. E., Haileselassie, B., & Mochly-Rosen, D. (2019). Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington’s disease. Journal of Molecular and Cellular Cardiology, 127, 125–133. https://doi.org/10.1016/j.yjmcc.2018.12.004
  • Ke, T., Gonçalves, F. M., Gonçalves, C. L., Dos Santos, A. A., Rocha, J. B. T., Farina, M., Skalny, A., Tsatsakis, A., Bowman, A. B., & Aschner, M. (2019). Post-translational modifications in MeHg-induced neurotoxicity. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1865(8), 2068–2081. https://doi.org/10.1016/j.bbadis.2018.10.024
  • Krishna Chandran, A. M., Christina, H., Das, S., Mumbrekar, K. D., & Satish Rao, B. S. (2019). Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. Environmental Toxicology and Pharmacology, 71, 103224. https://doi.org/10.1016/j.etap.2019.103224
  • Lei, M.-Y., Cong, L., Liu, Z.-Q., Liu, Z.-F., Ma, Z., Liu, K., Li, J., Deng, Y., Liu, W., & Xu, B. (2022). Resveratrol reduces DRP1-mediated mitochondrial dysfunction via the SIRT1–PGC1α signaling pathway in manganese-induced nerve damage in mice. Environmental Toxicology, 37(2), 282–298. https://doi.org/10.1002/tox.23397
  • Liang, D., Zhuo, Y., Guo, Z., He, L., Wang, X., He, Y., Li, L., & Dai, H. (2020). SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie, 170, 10–20. https://doi.org/10.1016/j.biochi.2019.12.001
  • Lin, T., Ruan, S., Huang, D., Meng, X., Li, W., Wang, B., & Zou, F. (2019). MeHg-induced autophagy via JNK/Vps34 complex pathway promotes autophagosome accumulation and neuronal cell death. Cell Death & Disease, 10(6), 399. https://doi.org/10.1038/s41419-019-1632-z
  • Liu, T., Yang, Q., Zhang, X., Qin, R., Shan, W., Zhang, H., & Chen, X. (2020). Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sciences, 257, 118116. https://doi.org/10.1016/j.lfs.2020.118116
  • Martins, R. D. P., Braga, H. D. C., da Silva, A. P., Dalmarco, J. B., de Bem, A. F., dos Santos, A. R. S., Dafre, A. L., Pizzolatti, M. G., Latini, A., Aschner, M., & Farina, M. (2009). Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food and Chemical Toxicology, 47(3), 645–649. https://doi.org/10.1016/j.fct.2008.12.020
  • Ni, L., Wei, Y., Pan, J., Li, X., Xu, B., Deng, Y., Yang, T., & Liu, W. (2021). The effects of mTOR or Vps34-mediated autophagy on methylmercury-induced neuronal apoptosis in rat cerebral cortex. Food and Chemical Toxicology, 155, 112386. https://doi.org/10.1016/j.fct.2021.112386
  • Novo, J. P., Martins, B., Raposo, R. S., Pereira, F. C., Oriá, R. B., Malva, J. O., & Fontes-Ribeiro, C. (2021). Cellular and molecular mechanisms mediating methylmercury neurotoxicity and neuroinflammation. International Journal of Molecular Sciences, 22(6), 3101. https://doi.org/10.3390/ijms22063101
  • Pan, J., Wei, Y., Ni, L., Li, X., Deng, Y., Xu, B., Yang, T., Sun, J., & Liu, W. (2022). Unbalanced ER-mitochondrial calcium homeostasis promotes mitochondrial dysfunction and associated apoptotic pathways activation in methylmercury exposed rat cortical neurons. Journal of Biochemical and Molecular Toxicology, 36, e23136.
  • Panes, J. D., Godoy, P. A., Silva-Grecchi, T., Celis, M. T., Ramirez-Molina, O., Gavilan, J., Muñoz-Montecino, C., Castro, P. A., Moraga-Cid, G., Yévenes, G. E., Guzmán, L., Salisbury, J. L., Trushina, E., & Fuentealba, J. (2020). Changes in PGC-1α/SIRT1 signaling impact on mitochondrial homeostasis in amyloid-beta peptide toxicity model. Frontiers in Pharmacology, 11, 709. https://doi.org/10.3389/fphar.2020.00709
  • Reddy, P. H. (2014). Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction. Journal of Alzheimer’s Disease, 40(2), 245–256. https://doi.org/10.3233/JAD-132060
  • Rothenberg, S. E., Korrick, S. A., Liu, J., Nong, Y., Nong, H., Hong, C., Trinh, E. P., Jiang, X., Biasini, F. J., & Ouyang, F. (2021). Maternal methylmercury exposure through rice ingestion and child neurodevelopment in the first three years: A prospective cohort study in rural China. Environmental Health, 20(1), 50. https://doi.org/10.1186/s12940-021-00732-z
  • Wang, Y., Habibullah-Al-Mamun, M., Han, J., Wang, L., Zhu, Y., Xu, X., Li, N., & Qiu, G. (2020). Total mercury and methylmercury in rice: Exposure and health implications in Bangladesh. Environmental Pollution (Barking, Essex: 1987), 265(Pt A), 114991. https://doi.org/10.1016/j.envpol.2020.114991
  • Wei, Y., Ni, L., Pan, J., Li, X., Deng, Y., Xu, B., Yang, T., Sun, J., & Liu, W. (2023). Methylmercury promotes oxidative stress and autophagy in rat cerebral cortex: Involvement of PI3K/AKT/mTOR or AMPK/TSC2/mTOR pathways and attenuation by N-acetyl-l-cysteine. Neurotoxicology and Teratology, 95, 107137. https://doi.org/10.1016/j.ntt.2022.107137
  • Whitley, B. N., Engelhart, E. A., & Hoppins, S. (2019). Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion, 49, 269–283. https://doi.org/10.1016/j.mito.2019.06.002
  • Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123
  • Xu, S., Pi, H., Chen, Y., Zhang, N., Guo, P., Lu, Y., He, M., Xie, J., Zhong, M., Zhang, Y., Yu, Z., & Zhou, Z. (2013). Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death & Disease, 4(3), e540. https://doi.org/10.1038/cddis.2013.7
  • Yang, C. Y., Liu, S. H., Su, C. C., Fang, K. M., Yang, T. Y., Liu, J. M., Chen, Y. W., Chang, K. C., Chuang, H. L., Wu, C. T., Lee, K., & IHuang, C. F. (2022). Methylmercury induces mitochondria- and endoplasmic reticulum stress-dependent pancreatic β-cell apoptosis via an oxidative stress-mediated JNK signaling pathway. International Journal of Molecular Sciences, 23, 2858.
  • Yang, N., Guan, Q.-W., Chen, F.-H., Xia, Q.-X., Yin, X.-X., Zhou, H.-H., & Mao, X.-Y. (2020). Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxidative Medicine and Cellular Longevity, 2020, 6687185. https://doi.org/10.1155/2020/6687185
  • Zhang, Q., Zhang, C., Ge, J., Lv, M.-W., Talukder, M., Guo, K., Li, Y.-H., & Li, J.-L. (2020). Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy. Food & Function, 11(2), 1856–1868. https://doi.org/10.1039/c9fo02287b
  • Zhang, S., Che, L., He, C., Huang, J., Guo, N., Shi, J., Lin, Y., & Lin, Z. (2019). Drp1 and RB interaction to mediate mitochondria-dependent necroptosis induced by cadmium in hepatocytes. Cell Death & Disease, 10(7), 523. https://doi.org/10.1038/s41419-019-1730-y
  • Zhao, Q., Tian, Z., Zhou, G., Niu, Q., Chen, J., Li, P., Dong, L., Xia, T., Zhang, S., & Wang, A. (2020). SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics, 10(11), 4822–4838. https://doi.org/10.7150/thno.42387
  • Zhao, X., Wang, C., Dai, S., Liu, Y., Zhang, F., Peng, C., & Li, Y. (2022). Quercetin protects ethanol-induced hepatocyte pyroptosis via scavenging mitochondrial ROS and promoting PGC-1α-regulated mitochondrial homeostasis in L02 cells. Oxidative Medicine and Cellular Longevity, 2022, 4591134. https://doi.org/10.1155/2022/4591134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.