577
Views
20
CrossRef citations to date
0
Altmetric
Articles

Biofilm Mediated Degradation of Petroleum Products

, , , , , , , , , & show all
Pages 389-398 | Received 15 Jul 2021, Accepted 12 Aug 2021, Published online: 29 Aug 2021

References

  • Abbasian F, Lockington R, Megharaj M, Naidu R. 2016. A review on the genetics of aliphatic and aromatic hydrocarbon degradation. Appl Biochem Biotechnol 178(2):224–250..
  • Ahmed F, Anm F, Ahmed F, Anm F. 2018. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci & Nat Resour 11(3):63–69. https://econpapers.repec.org/RePEc:adp:ijesnr:v:11:y:2018:i:3:p:63-69.
  • Alzahrani A, Rajendran P. 2019. Petroleum hydrocarbon and living organisms. In: Hydrocarbon Pollution and its Effect on the Environment. London, UK: IntechOpen.
  • Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N. 2015. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:274.
  • Atlas RM. 1975. Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol. 30(3):396–403.
  • Baker JM. 1970. The effects of oils on plants. Environ Pollut 1(1):27–44. https://www.sciencedirect.com/science/article/pii/0013932770900042.
  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96(9):1049–1055. https://www.sciencedirect.com/science/article/pii/S0960852404003220.
  • Boll M, Heider J. 2010. Anaerobic degradation of hydrocarbons: mechanisms of C–H-bond activation in the absence of oxygen. In: Timmis KN, editor. Handbook of Hydrocarbon and Lipid Microbiology. Berlin-Heidelberg: Springer, p1011–1024.
  • Busch A, Lacal J, Silva-Jímenez H, Krell T, Ramos JL. 2010. Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control. J Bacteriol 192(16):4246–4250.
  • Butler CS, Mason JR. 1996. Structure-function Analysis of the Bacterial Aromatic Ring-hydroxylating Dioxygenases. In: Poole RKBT-A in MP, editor. Vol. 38. Amsterdam, Netherlands: Academic Press, p47–84. https://www.sciencedirect.com/science/article/pii/S0065291108601551
  • Cao B, Nagarajan K, Loh K-C. 2009. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228.
  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. 2009. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73(1):71–133.
  • Chikere CB, Okpokwasili GC, Chikere BO. 2011. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1(3):117–138. https://pubmed.ncbi.nlm.nih.gov/22611524.
  • Daghio M, Aulenta F, Vaiopoulou E, Franzetti A, Arends JBA, Sherry A, Suárez-Suárez A, Head IM, Bestetti G, Rabaey K. 2017. Electrobioremediation of oil spills. Water Res 114:351–370. https://www.sciencedirect.com/science/article/pii/S0043135417301185.
  • Dasgupta D, Ghosh R, Sengupta TK. 2013. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. In: Sereikaite J, Ernst WJ, Kues WA, Pontes O, Sanyal S, editors. ISRN Biotechnol. London, UK: Hindawi, p250749.
  • Dheilly NM, Poulin R, Thomas F. 2015. Biological warfare: microorganisms as drivers of host-parasite interactions. Infect Genet Evol 34:251–259.
  • Díaz E. 2004. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol off J Spanish Soc Microbiol 7(3):173–180.
  • El Amrani A, Dumas A-S, Wick LY, Yergeau E, Berthomé R. 2015. “Omics” insights into PAH degradation toward improved green remediation biotechnologies”. Environ Sci Technol 49(19):11281–11291.
  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM, Strous M. 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol. 10(11):3164–3173.
  • Ghosal D, Ghosh S, Dutta TK, Ahn Y. 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369. https://www.frontiersin.org/article/10.3389/fmicb.2016.01369
  • Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP. 2016. A greener approach for resource recycling: Manganese bioleaching. Chemosphere 154:628–639. https://www.sciencedirect.com/science/article/pii/S0045653516305021.
  • Grace Liu P-W, Chang TC, Whang L-M, Kao C-H, Pan P-T, Cheng S-S. 2011. Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. Int Biodeterior Biodegradation 65(8):1119–1127. https://www.sciencedirect.com/science/article/pii/S0964830511001831.
  • Guerra AB, Oliveira JS, Silva-Portela RCB, Araújo W, Carlos AC, Vasconcelos ATR, Freitas AT, Domingos YS, de Farias MF, Fernandes GJT, et al. 2018. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environ Pollut 235:869–880.
  • Habe H, Chung J-S, Kato H, Ayabe Y, Kasuga K, Yoshida T, Nojiri H, Yamane H, Omori T. 2004. Characterization of the upper pathway genes for fluorene metabolism in Terrabacter sp. strain DBF63. J Bacteriol 186(17):5938–5944.
  • Hao D-C, Li X-J, Xiao P-G, Wang L-F. 2020. The utility of electrochemical systems in microbial degradation of polycyclic aromatic hydrocarbons: discourse, diversity and design. Front Microbiol 11:557400. https://www.frontiersin.org/article/10.3389/fmicb.2020.557400.
  • Harayama S, Kasai Y, Hara A. 2004. Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15(3):205–214.
  • Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K. 2005. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71(12):7838–7845. https://pubmed.ncbi.nlm.nih.gov/16332758.
  • Jahromi H, Fazaelipoor MH, Ayatollahi S, Niazi A. 2014. Asphaltenes biodegradation under shaking and static conditions. Fuel 117:230–235. https://www.sciencedirect.com/science/article/pii/S0016236113009381.
  • Jansa J, Treseder KK. 2017. Chapter 19Introduction: Mycorrhizas and the Carbon Cycle. In: Johnson NC, Gehring C, Jansa S, editors. Amsterdam, Netherlands: Elsevier, p343–355. https://www.sciencedirect.com/science/article/pii/B978012804312700019X
  • Joshi SJ, Al-Wahaibi Y, Al-Bahry S. 2019. Biotransformation of Heavy Crude Oil and Biodegradation of Oil Pollution by Arid Zone Bacterial Strains. In Microbial Metabolism of Xenobiotic Compounds. Singapore: Springer, p103–122.
  • Kasai Y, Kishira H, Harayama S. 2002. Bacteria belonging to the genus cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68(11):5625–5633.
  • Keyte IJ, Harrison RM, Lammel G. 2013. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review. Chem Soc Rev 42(24):9333–9391. http://dx.doi.org/10.1039/C3CS60147A.
  • Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M. 2018. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil – a review. Chemosphere212:755–767. https://www.sciencedirect.com/science/article/pii/S0045653518315698.
  • Kleindienst S, Paul JH, Joye SB. 2015. Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13(6):388–396..
  • Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K. 2020. Total Petroleum Hydrocarbons. Cham: Springer.
  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. 2017. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968. https://www.sciencedirect.com/science/article/pii/S0045653516315065.
  • Lade H, Paul D, Kweon JH. 2014. N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. Biomed Res Int 2014:162584.
  • Lahiri D, Nag M, Dutta B, Sarkar T, Ray RR. 2021. Artificial neural network and response surface methodology-mediated optimization of bacteriocin production by Rhizobium leguminosarum. Iran J Sci Technol Trans A Sci 45.
  • Lahiri D, Nag M, Sarkar T, Dutta B, Ray RR. 2021. Antibiofilm activity of α-amylase from Bacillus subtilis and prediction of the optimized conditions for biofilm removal by response surface methodology (RSM) and artificial neural network (ANN). Appl Biochem Biotechnol 193(6):1853–1872..
  • Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur H. a, Siddhartha P, Ray R. 2021. Microbiologically synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front Microbiol.
  • Ma Y-L, Lu W, Wan L-L, Luo N. 2015. Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175(3):1294–1305.
  • Mangwani N, Kumari S, Das S. 2017. Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm. Pedosphere 27(3):548–558. https://www.sciencedirect.com/science/article/pii/S1002016017603503.
  • Mangwani N, Shukla SK, Kumari S, Das S, Rao TS. 2016. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv 6(62):57540–57551. http://dx.doi.org/10.1039/C6RA12824F.
  • Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199.
  • Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D. 2015. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res Int. 22(19):14852–14861.
  • Modin O, Aulenta F. 2017. Three promising applications of microbial electrochemistry for the water sector. Environ Sci: Water Res Technol 3(3):391–402. http://dx.doi.org/10.1039/C6EW00325G.
  • Moreno R, Rojo F. 2017. Enzymes for aerobic degradation of alkanes in bacteria. In: Rojo F, editor. Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Berlin: Springer Science and Business Media, LLC, p1–25.
  • Mortelmans K, Haworth S, Lawlor T, Speck W, Tainer B, Zeiger E. 1986. Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen 8(S7):1–119.
  • Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O. 2015. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res Int22(6):4725–4735..
  • Mukherjee AK, Bhagowati P, Biswa BB, Chanda A, Kalita B. 2017. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteomics 167:25–35.
  • Musat F. 2015. The anaerobic degradation of gaseous, nonmethane alkanes – from in situ processes to microorganisms. Comput Struct Biotechnol J13:222–228. https://www.sciencedirect.com/science/article/pii/S2001037015000112.
  • Nag M, Lahiri D, Sarkar T, Ghosh S, Dey A, Edinur HA, Pati S, Ray RR. 2021. Microbial fabrication of nanomaterial and its role in disintegration of exopolymeric matrices of biofilm. Front Chem 9:690590.https://www.frontiersin.org/article/10.3389/fchem.2021.690590.
  • Nealson KH, Saffarini D. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343.
  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B. 2011. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLOS One 6(3):e17961.
  • Nikolopoulou M, Kalogerakis N. 2008. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar Pollut Bull 56(11):1855–1861.
  • Olowomofe TO, Oluyege JO, Aderiye BI, Oluwole OA. 2019. Degradation of poly aromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from Agbabu bitumen sediments in Ondo State. AIMS Microbiol 5(4):308–323.
  • Özkara A, Akyıl D, Konuk M. 2016. Pesticides, environmental pollution, and health. In: Larramendy ML, Soloneski S, editors. Environ Heal Risk – Hazard Factors to Living Species. London, UK: IntechOpen. https://www.intechopen.com/chapters/50482
  • Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. 2015. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 115(5):2045–2108..
  • Palma E, Daghio M, Franzetti A, Petrangeli Papini M, Aulenta F. 2018. The bioelectric well: a novel approach for in situ treatment of hydrocarbon-contaminated groundwater. Microb Biotechnol 11(1):112–118.
  • Parales RE, Parales JV, Pelletier DA, Ditty J-A. 2008. Chapter 1 Diversity of Microbial Toluene Degradation Pathways. Vol. 64. Amsterdam, Netherlands: Academic Press, p 1–73. https://www.sciencedirect.com/science/article/pii/S0065216408004012.
  • Parke D. 1995. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. J Bacteriol 177(13):3808–3817.
  • Patowary K, Saikia RR, Kalita MC, Deka S. 2015. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann Microbiol 65(1):225–234..
  • Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955..
  • Prabhakar A, Mishra S, Das AP. 2019. Isolation and identification of lead (Pb) solubilizing bacteria from automobile waste and its potential for recovery of lead from end of life waste batteries. Geomicrobiol J 36(10):894–903..
  • Prince RC. 1993. Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19(4):217–242.
  • Rabodonirina S, Rasolomampianina R, Krier F, Drider D, Merhaby D, Net S, Ouddane B. 2019. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. J Environ Manage 232:1–7. https://www.sciencedirect.com/science/article/pii/S0301479718312702.
  • Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, et al. 2016. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26(1–3):5–28.
  • Rojo F. 2009. Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490.
  • Rontani J-F, Mouzdahir A, Michotey V, Bonin P. 2002. Aerobic and anaerobic metabolism of squalene by a denitrifying bacterium isolated from marine sediment. Arch Microbiol [Internet] 178(4):279–287..
  • Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT. 2013. Lignin-degrading peroxidases in polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105(6):1428–1444..
  • Sabra W, Dietz D, Tjahjasari D, Zeng A-P. 2010. Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10(5):407–421.
  • Scott K, 2016. 5 – Membranes and separators for microbial fuel cells. In: Scott Keith, Yu EHBT-ME editors. Boston: Woodhead Publishing, p153–178. https://www.sciencedirect.com/science/article/pii/B9781782423751000058
  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H. 2004. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231A.
  • Song HG, Bartha R. 1990. Effects of jet fuel spills on the microbial community of soil. Appl Environ Microbiol 56(3):646–651.
  • Stingley RL, Brezna B, Khan AA, Cerniglia CE. 2004. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150(11):3749–3761.
  • Sun Y. 2009. On-site management of international petroleum cooperation projects. Nat Gas Explor Dev.
  • Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. 2014. Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98(20):8481–8495.
  • Thapa B, Kc A, Ghimire A. 1970. A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ J Sci Eng Technol 8: 164–170. https://www.nepjol.info/index.php/KUSET/article/view/6056
  • Toyofuku M, Roschitzki B, Riedel K, Eberl L. 2012. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res. 11(10):4906–4915.
  • Tucci M, Cruz Viggi C, Esteve Núñez A, Schievano A, Rabaey K, Aulenta F. 2021. Empowering electroactive microorganisms for soil remediation: challenges in the bioelectrochemical removal of petroleum hydrocarbons. Chem Eng J 419:130008. https://www.sciencedirect.com/science/article/pii/S1385894721015928.
  • van Beilen JB, Funhoff EG. 2007. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21..
  • van der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71(1–2):159–178..
  • Vedler E. 2009. Megaplasmids and the degradation of aromatic compounds by soil bacteria. In: Edward S, editor. Microbial Megaplasmids. Berlin: Springer Berlin Heidelberg, p33–53.
  • Velázquez F, de Lorenzo V, Valls M. 2006. The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes. Environ Microbiol 8(4):591–602.
  • Venkateswaran K, Hoaki T, Kato M, Maruyama T. 1995. Microbial degradation of resins fractionated from Arabian light crude oil. Can J Microbiol. 41(4–5):418–424.
  • Vomberg A, Klinner U. 2000. Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89(2):339–348.
  • Wald J, Hroudova M, Jansa J, Vrchotova B, Macek T, Uhlik O. 2015. Pseudomonads rule degradation of polyaromatic hydrocarbons in aerated sediment. Front Microbiol 6:1268. https://www.frontiersin.org/article/10.3389/fmicb.2015.01268
  • Wang X-B, Chi C-Q, Nie Y, Tang Y-Q, Tan Y, Wu G, Wu X-L. 2011. Degradation of petroleum hydrocarbons (C6-C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102(17):7755–7761.
  • Wang Y, Liang J, Wang J, Gao S. 2018. Combining stable carbon isotope analysis and petroleum-fingerprinting to evaluate petroleum contamination in the Yanchang oil field located on loess plateau in China. Environ Sci Pollut Res Int 25(3):2830–2841..
  • Widdel F, Musat F. 2010. Diversity and common principles in enzymatic activation of hydrocarbons. In: Kenneth N, editor. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer Science and Business Media, LLC, p981–1009.
  • Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z. 2008. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19(2):247–257.
  • Xue J, Yu Y, Bai Y, Wang L, Wu Y. 2015. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol 71(2):220–228.
  • Yuniati MD. 2018. Bioremediation of petroleum-contaminated soil: a review. IOP Conf Ser: Earth Environ Sci 118:012063. http://dx.doi.org/10.1088/1755-1315/118/1/012063.
  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR. 2010. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12(4):1011–1020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.