80
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

New Insights in Enhancing the Phosphorus Use Efficiency using Phosphate-Solubilizing Microorganisms and Their Role in Cropping System

ORCID Icon, , , ORCID Icon & ORCID Icon
Received 23 Aug 2023, Accepted 11 Mar 2024, Published online: 22 Apr 2024

References

  • Aallam Y, Dhiba D, Lemriss S, Souiri A, Karray F, Rasafi TE, Saïdi N, Haddioui A, El Kabbaj S, Virolle MJ, et al. 2021. Isolation and characterization of phosphate solubilizing Streptomyces sp. Endemic from sugar beet fields of the Beni-Mellal region in Morocco. Microorganisms. 9(5):914. [PubMed: 33923283].
  • Abderrahim A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Kadmiri MI. 2021. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol 12:628379. https://doi.org/10.3389/fmicb.2021.628379
  • Ahmad A, Zafar U, Khan A, Haq T, Mujahid T, Wali M. 2022. Effectiveness of compost inoculated with phosphate solubilizing bacteria. J Appl Microbiol 133(2):1115–1129. https://doi.org/10.1111/jam.15633
  • Ahmad A, Moin SF, Liaqat I, Saleem S, Muhammad F, Mujahid T, Zafar U. 2023. Isolation, solubilization of inorganic phosphate, and production of organic acids by individual and co-inoculated microorganisms. Geomicrobiol J. 40(1):111–121.
  • Alam K, Barman M, Datta SP, Annapurna K, Shukla L, Ray P. 2022. Application of phosphate solubilizing fungi and lime altered the soil inorganic phosphorus fractions in an Ultisol of north-eastern India. Soil Sci Plant Nutr 68(4):409–420. https://doi.org/10.1080/00380768.2022.2094204
  • Amar H, Benzaazoua M, Elghali A, Hakkou R, Taha Y. 2022. Waste rock reprocessing to enhance the sustainability of phosphate reserves: a critical review. J Cleaner Prod. 381:135151.
  • Barber SA. 1995. Soil Nutrient Bioavailability: A Mechanistic Approach. 2nd Ed. New York: John Wiley. https://doi.org/10.2136/sssaj2004.1645
  • Behera BC, Yadav H, Singh SK, Mishra RR, Sethi RR, Dutta SK, Thatoi HN. 2017. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genet Eng Biotechnol. 15(1):169–178.
  • Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H. 2009. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol. 191(11):815–824. [PubMed: 19771411].
  • Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. 2019. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J. 36(10):904–916.
  • Blanco-Vargas A, Rodríguez-Gacha LM, Sánchez-Castro N, Garzón-Jaramillo R, Pedroza-Camacho LD, Poutou-Piñales RA, Rivera-Hoyos CM, Díaz-Ariza LA, Pedroza-Rodríguez AM. 2020. Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon. 6(10):e05218.]
  • Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep. 10(1):2858. [PubMed: 32071331].
  • Bouizgarne B. 2022. Phosphate-solubilizing actinomycetes as biofertilizers and biopesticides: bioformulations for sustainable agriculture. In: Arora NK and Bouizgarne B, editors. Microbial Biotechnology for Sustainable Agriculture, Vol. 1. Singapore: Springer, p. 407–428.
  • Buczko U, Kuchenbuch RO. 2007. Phosphorus indices as risk-assessment tools in the U.S.A. and Europe – a review. Z Pflanzenernähr Bodenk. 170(4):445–460.
  • Bünemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A. 2004. Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques. Soil Science Soc Am J 68(5):1645–1655.
  • Chen W, Yang F, Zhang L, Wang J. 2016. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J. 33(10):870–877.
  • Da Silva LID, Pereira MC, Carvalho AMXD, Buttrós VH, Pasqual M, Dória J. 2023. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture. 13(2):462.
  • Dahal B, Ghosh Bag AG. 2023. Effect of integrated nutrient management on different parameters of lentil: a review. Commun Soil Sci Plant Anal. 54(8):1015–1023.
  • Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues: opportunities and perspectives. Int J Biol Sci. 5(6):578–595. [PubMed: 19774110].
  • Dhuldhaj UP, Malik N. 2022. Global perspective of phosphate solubilizing microbes phosphatase for improvement of soil, food and human health. Cell Mol Biomed Rep. 2(3):173–186.
  • Djuuna IAF, Prabawardani S, Massora M. 2022. Population distribution of phosphate-solubilizing microorganisms in agricultural soil. Microbes Environ. 37(1):ME21041. [PubMed: 35342122].
  • Dodd RJ, Sharpley AN. 2015. Recognizing the role of soil organic phosphorus in soil fertility and water quality. Resour Conserv Recycl. 105:282–293.
  • Dotaniya ML, Meena VD. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sect B Biol Sci. 85(1):1–12.
  • Ehlers K, Bakken LR, Frostegård Å, Frossard E, Bünemann EK. 2010. Phosphorus limitation in a Ferralsol: Impact on microbial activity and cell internal P pools. Soil Biol Biochem 42(4):558–566. https://doi.org/10.1016/J.SOILBIO.2009.11.025
  • Etesami H. 2020. Enhanced phosphorus fertilizer use efficiency with microorganisms. In: Meena R, editor. Nutrient Dynamics for Sustainable Crop Production. Singapore: Springer, p. 215–245.
  • Etesami H, Jeong BR, Glick BR. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci. 12:699618. [PubMed: 34276750].
  • Fatima F, Pathak N, Srivastava D, Verma SR. 2021. Molecular detection and exploration of diversity among fungal consortium involved in phosphate solubilization. Geomicrobiol J. 38(1):29–35.
  • Geng SM, Yan DH, Zhang TX, Weng BS, Zhang ZB, Qin TL. 2015. Effects of drought stress on agriculture soil. Nat Hazards. 75(2):1997–2011.
  • Gross A, Lin Y, Weber PK, Pett-Ridge J, Silver WL. 2020. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. Ecology. 101(2):e02928. [PubMed: 31715005].
  • Güneş A, Ataoğlu N, Turan M, Eşitken A, Ketterings QM. 2009. Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Z Pflanzenernähr Bodenk 172(3):385–392. https://doi.org/10.1002/jpln.200800121
  • Guo L, Yu Z, Li Y, Xie Z, Wang G, Liu J, Hu X, Wu J, Liu X, Jin J. 2023. Stimulation of primed carbon under climate change corresponds with phosphorus mineralization in the rhizosphere of soybean. Sci Total Environ. 899:165580. [PubMed: 37467990].
  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y. 2008a. Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol. 38(1):12–19.
  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y. 2008b. Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol. 24(11):2565–2575.
  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y. 2008c. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol. 40(3):510–517.
  • Hamdali H, Smirnov A, Esnault C, Ouhdouch Y, Virolle MJ. 2010. Physiological studies and comparative analysis of rock phosphate solubilization abilities of Actinomycetales originating from Moroccan phosphate mines and of Streptomyces lividans. Appl Soil Ecol. 44(1):24–31.
  • Hamim A, Boukeskasse A, Ouhdouch Y, Farrouki A, Barrijal S, Miché L, Mrabet R, Duponnois R, Hafidi M. 2019. Phosphate solubilizing and PGR activities of ericaceous shrubs microorganisms isolated from Mediterranean forest soil. Biocatal Agric Biotechnol. 19:101128.
  • He B, Liu Z, Wang X, Li M, Lin X, Xiao Q, Hu J. 2024. Dosage and exposure time effects of two micro(nono)plastics on arbuscular mycorrhizal fungal diversity in two farmland soils planted with pepper (Capsicum annuum L.). Sci Total Environ. 917:170216. [PubMed: 38278273].
  • Ijaz F, Ijaz MF, Javed H, Amin HA, Zafar H, Hamza A, Saleem MU, Mujeeb F, Ehsan S, Alvi A. 2023. Co-inoculation of Bradyrhizobium and phosphate solubilizing microbes on growth promotion of groundnut under rain-fed conditions. J Appli Res Plant Sci. 4(1):348–355.
  • Jiang F, Zhang L, Zhou J, George TS, Feng G. 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230(1):304–315. [PubMed: 33205416].
  • Kalayu G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron. 2019:1–7.
  • Khourchi S, Elhaissoufi W, Loum M, Ibnyasser A, Haddine M, Ghani R, Barakat A, Zeroual Y, Rchiad Z, Delaplace P, et al. 2022. Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiol Res. 262:127094. [PubMed: 35749891].
  • Kishore N, Pindi PK, Reddy SR. 2015. Plant biology and biotechnology: plant diversity, organization, function and improvement. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV, editors. Plant Biology and Biotechnology, Vol. 1. Berlin/Heidelberg: Springer, p. 1–827.
  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Tofazzal Islam M. 2017. Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. J Plant Growth Regul. 36(3):608–617.
  • Kumar V, Prasher IB. 2023. Phosphate solubilization and indole-3-acetic acid (IAA) produced by Colletotrichum gloeosporioides and Aspergillus fumigatus strains isolated from the rhizosphere of Dillenia indica L. Folia Microbiol. 68(2):219–229. [PubMed: 36205912].
  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci. 7:615. [PubMed: 27242821].
  • Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, Liao B, Shu WS, Li JT. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14(6):1600–1613. [PubMed: 32203124].
  • Li Z, Wang Y, Liu Z, Han F, Chen S, Zhou W. 2023. Integrated application of phosphorus-accumulating bacteria and phosphorus-solubilizing bacteria to achieve sustainable phosphorus management in saline soils. Sci Total Environ. 885:163971. [PubMed: 37150466].
  • Liu F, Qian J, Zhu Y, Wang P, Hu J, Lu B, He Y, Tang S, Shen J, Liu Y, et al. 2024. Phosphate solubilizing microorganisms increase soil phosphorus availability: a review. Geomicrobiol J. 41(1):1–16.
  • Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Högberg P. 2011. A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. For Ecol Manage. 262(2):95–104.
  • Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. 2021. Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants. Curr Microbiol. 78(5):1961–1972. [PubMed: 33839883].
  • Ma L, Ma WQ, Velthof GL, Wang FH, Qin W, Zhang FS, Oenema O. 2010. Modeling nutrient flows in the food chain of China. J Environ Qual. 39(4):1279–1289. [PubMed: 20830916].
  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H. 2009. Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol. 25(8):1479–1484.
  • Masrahi AS, Alasmari A, Shahin MG, Qumsani AT, Oraby HF, Awad-Allah MMA. 2023. Role of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in improving yield, yield components, and nutrients uptake of barley under salinity soil. Agriculture. 13(3):537.
  • Meena VS, Maurya BR, Verma JP, Meena RS. 2016. Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi: Springer, p331. https://doi.org/10.1007/978-81-322-2776-2
  • Meena SK, Meena VS. 2017. Importance of soil microbes in nutrient use efficiency and sustainable food production. In Meena V, Mishra P, Bisht J, Pattanayak A, editors. Agriculturally Important Microbes for Sustainable Agriculture. Singapore: Springer. https://doi.org/10.1007/978-981-10-5343-6_1
  • Mishra BK, Meena KK, Dubey PN, Aishwath OP, Kant K, Sorty AM, Bitla U. 2016. Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecol Eng. 97:327–333.
  • Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S. 2020. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Sci Rep. 10(1):4916. [PubMed: 32188930].
  • Oberson A, Joner JE. 2005. Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin D, editors. Organic Phosphorus in the Environment. CABI. p133–164. https://doi.org/10.1079/9780851998220.0133
  • Narolia GP, Jajoria DK, Dotaniya ML. 2013. Role of Phosphorus, PSB and Zinc in Isabgol (Plantago ovata F). Saarbrücken, Germany: Lambert Academic Publishing.
  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth H-R, Frossard E. 2001. Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils. 34(1):31–41.
  • Öğüt M, Er F, Neumann G. 2011. Increased proton extrusion of wheat roots by inoculation with phosphorus solubilising microorganisms. Plant Soil. 339(1–2):285–297.
  • Pan L, Cai B. 2023. Phosphate-solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms. 11(12):2904. [PubMed: 38138048].
  • Rafique M, Naveed M, Mustafa A, Akhtar S, Munawar M, Kaukab S, Ali HM, Siddiqui MH, Salem MZM. 2021. The combined effects of gibberellic acid and Rhizobium on growth, yield and nutritional status in chickpea (Cicer arietinum L.). Agronomy. 11(1):105.
  • Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr. 21(1):49–68.
  • Raymond NS, Gómez-Muñoz B, van der Bom FJT, Nybroe O, Jensen LS, Müller-Stöver DS, Oberson A, Richardson AE. 2021. Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol. 229(3):1268–1277. [PubMed: 32929739].
  • Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 23(7):515–531. [PubMed: 23558516].
  • Rezakhani L, Motesharezadeh B, Tehrani MM, Etesami H, Mirseyed Hosseini H. 2020. Effect of silicon and phosphate-solubilizing bacteria on improved phosphorus (P) uptake is not specific to insoluble P-fertilized sorghum (Sorghum bicolor L.) plants. J Plant Growth Regul. 39(1):239–253.
  • Rfaki A, Zennouhi O, Aliyat FZ, Nassiri L, Ibijbijen J. 2020. Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in Moroccan wheat (Triticum aestivum L). Geomicrobiol J. 37(3):230–241.
  • Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156(3):989–996. [PubMed: 21606316].
  • Rudresh DL, Shivaprakash MK, Prasad RD. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol. 51(3):217–222. [PubMed: 15920619].
  • Şahin F, Çakmakçi R, Kantar F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil. 265(1–2):123–129.
  • Sarmah R, Sarma A. 2023. Phosphate solubilizing microorganisms: a review. Commun Soil Sci Plant Anal. 54(10):1306–1315.
  • Sharma SN, Prasad R. 2003. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J Agric Sci 141(3–4):359–369. https://doi.org/10.1017/S0021859603003678
  • Sharma S, Prasad R, Shivay Y, Dwivedi M, Kumar S, Kumar D. 2009. Effect of rates and sources of phosphorus on productivity and economics of rice (Oryza sativa) as influenced by crop-residue incorporation. Indian J Agron 54:42–46.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):587. https://doi.org/10.1186/2193-1801-2-587
  • Sharma S, Compant S, Ballhausen MB, Ruppel S, Franken P. 2020. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol Res. 240:126556. [PubMed: 32683279].
  • Shrivas VL, Choudhary AK, Dass A, Hariprasad P, Sharma S. 2024. Impact of different farming practices on soil nutrients and functional bacterial guilds in pigeonpea-wheat crop rotation. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-023-01575-y
  • Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y, Yang W. 2022. Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercropping systems. J Sci Food Agric. 102(4):1430–1442. [PubMed: 34389997].
  • Soumare A, Boubekri K, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L. 2019. From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs. Front Bioeng Biotechnol. 7:425.
  • Streeter JG. 1994. Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can J Microbiol. 40(7):513–522.
  • Sud KC, Jatav M. 2007. Response of potato to phosphorus and phosphorus solubilizing bacteria in brown hill soils of Shimla. Potato J. 34:109–110.
  • Tariq MR, Shaheen F, Mustafa S, Ali S, Fatima A, Shafiq M, Safdar W, Sheas MN, Hameed A, Nasir MA. 2022. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ. 10:e13782. [PubMed: 35996668].
  • Thampi M, Dhanraj ND, Prasad A, Ganga G, Jisha MS. 2023. Phosphorus solubilizing microbes (PSM): biological tool to combat salinity stress in crops. Symbiosis. 91(1–3):15–32.
  • Tian J, Ge F, Zhang D, Deng S, Liu X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology (Basel). 10(2):158. [PubMed: 33671192].
  • Thuc LV, Thu LTM, Huu TN, Nghi PH, Quang LT, Xuan DT, Xuan LNT, Khuong LQ. 2023. Effects of phosphorus fertilizers and phosphorus-solubilizing rhizosphere bacteria on soil fertility, phosphorus uptake, growth, and yield of sesame (Sesamum indicum L.) cultivated on alluvial soil in dike. Geomicrobiol J 40(6):527–537. https://doi.org/10.1080/01490451.2023.2204860
  • Verma RV, Maurya BR, Meena VS. 2017. Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol Appl Sci. 6:301–309.
  • Verma JP, Yadav J, Tiwari KN. 2012. Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal. 43(3):605–621.
  • Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmiedt T, Datta R. 2020. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 10(8):334.
  • Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 16(5):299–363. [PubMed: 16845554].
  • Wang G, Jin Z, George TS, Feng G, Zhang L. 2023. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol. 238(6):2578–2593. [PubMed: 36694293].
  • Wang YY, Li P-S, Zhang BX, Wang Y-P, Meng J, Gao Y-F, He XM, Hu X-M. 2020. Identification of phosphate-solubilizing microorganisms and determination of their phosphate-solubilizing activity and growth-promoting capability. BioRes. 15(2):2560–2578.
  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E. 2019. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol. 223 (3):1127–1142. [PubMed: 30843207].
  • Yadegari M, Farahani GHN, Mosadeghzad Z. 2012. Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). Afr J Agric Res. 7:4716–4723.
  • Zhang L, Meng T, Zhang Z, Mu Y. 2023. Effects of organic fertilizer substitution on the technical efficiency among farmers: evidence from Bohai rim region in China. Agronomy. 13(3):761.
  • Zúñiga-Silgado D, Rivera-Leyva JC, Coleman JJ, Sánchez-Reyez A, Valencia-Díaz S, Serrano M, de-Bashan LE, Folch-Mallol JL. 2020. Soil type affects organic acid production and phosphorus solubilization efficiency mediated by several native fungal strains from Mexico. Microorganisms. 8(9):1337. [PubMed: 32887277].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.