42
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Triethylene diamine-functionalized silver-activated charcoal for efficient, exothermic and spontaneous sequestration of radioiodine

, &
Pages 748-761 | Received 28 Dec 2023, Accepted 22 Apr 2024, Published online: 06 May 2024

References

  • Kessler, G. Requirements for Nuclear Energy in the 21st Century Nuclear Energy As a Sustainable Energy Source. Prog. Nucl. Energy. 2002, 40(3–4), 309–325. DOI: 10.1016/S0149-1970(02)00024-0.
  • Bonah, E.; Nii, A. M.; Kwame, S. A.; Afornu, B. Nuclear Energy for Sustainable Development: SWOT Analysis on Ghana’s Nuclear Agenda. Ener. Rep. 2020, 6, 107–115. DOI: 10.1016/j.egyr.2019.11.163.
  • Brook, B. W.; Alonso, A.; Meneley, D. A.; Misak, J.; Bleese, T. B.; van Erp, J. Why Nuclear Energy Is Sustainable and Has to Be Part of the Energy Mix. Sus. Mater. Technol. 2014, 1–2, 8–16. DOI: 10.1016/j.susmat.2014.11.001.
  • Ewing, R. C.; von Hippel, F. N. Nuclear Waste Management in the United States—Starting Over. Science. 2009, 325(5937), 151–152. DOI: 10.1126/science.1174594.
  • Gupta, N. K.; Sengupta, A.; Gupta, A.; Sonawane, J. R.; Sahoo, H. Biosorption-An Alternative Method for Nuclear Waste Management: A Critical Review. J. Environ. Chem. Engin. 2018, 6(2), 2159–2175. DOI: 10.1016/j.jece.2018.03.021.
  • Delhaye, C.; Teghem, J.; Kunsch, P. The Just-In-Time Philosophy: A Literature Review. Int. J. Prod. Economics. 1991, 24(1–2), 29–39. DOI: 10.1016/0925-5273(91)90150-R.
  • Lidskog, R.; Sundqvist, G. On the Right Track? Technology, Geology and Society in Swedish Nuclear Waste Management. J. Risk. Res. 2004, 7(2), 251–268. DOI: 10.1080/1366987042000171924.
  • Orhan, M. F.; Dincer, I.; Rosen, M. A.; Kanoglu, M. Integrated Hydrogen Production Options Based on Renewable and Nuclear Energy Sources. Renewable. Sus. Ener. Rev. 2012, 16(8), 6059–6082. DOI: 10.1016/j.rser.2012.06.008.
  • Edwards, M. W.; Schweitzer, R. D.; Shakespeare-Finch, J.; Byrned, A.; Gordon-King, K. Living with Nuclear Energy: A Systematic Review of the Psychological Consequences of Nuclear Power. Energ. Res. Soc. Sci. 2019, 47, 1–15. DOI: 10.1016/j.erss.2018.08.016.
  • Li, M.-J.; Zhu, H.-H.; Guo, J.-Q.; Wang, K.; Tao, W.-Q. The Development Technology and Applications of Supercritical CO2 Power Cycle in Nuclear Energy, Solar Energy and Other Energy Industries. Appl. Ther. Engin. 2017, 126, 255–275. DOI: 10.1016/j.applthermaleng.2017.07.173.
  • Volkert, W. A.; Hoffman, T. J. The Chemistry of Therapeutic Radiopharmaceuticals. Chem. Rev. 1999, 99(9), 2269–2292. DOI: 10.1021/cr9804386.
  • Vermeulen, K.; Vandamme, M.; Bormans, G.; Cleeren, F. Design and Challenges of Radiopharmaceuticals. Seminars. Nucl. Med. 2019, 49(5), 339–356. DOI: 10.1053/j.semnuclmed.2019.07.001.
  • Wadsak, W.; Mitterhauser, M. Basics and Principles of Radiopharmaceuticals for PET/CT. Euro. J. Radiol. 2010, 73(3), 461–469. DOI: 10.1016/j.ejrad.2009.12.022.
  • Jamous, M.; Haberkorn, U.; Mier, W. Synthesis of Peptide Radiopharmaceuticals for the Therapy and Diagnosis of Tumor Diseases. Molecules. 2013, 18(3), 3379–3409. DOI: 10.3390/molecules18033379.
  • Lin, M.; Ta, R. T.; Kairemo, K.; Le, D. B.; Ravizzini, G. C. A New Era Cancer Biotherapy &radiopharmaceuticals. Cancer Biother Radiopharma. 2018, 33(1). DOI: 10.1089/cbr.29001.
  • Verburg, F. A.; de Keizer, B.; VanIsselt, J. W. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry–Anti-Cancer Agents. Anti Cancer Agents Med. Chem. 2010, 7(4), 399–409.
  • Liu, S. Osteotropic Radiopharmaceuticals Based on Phosphonic Acids for the Treatment of Bone Metastases in Humans (Review. Chem. Soc. Rev. 2004, 33(7), 445–461. DOI: 10.1039/b309961j.
  • Bhattacharyya, S.; Dixit, M. Metallic Radionuclides in the Development of Diagnostic and Therapeutic Radiopharmaceuticals. Dalton Trans. 2011, 40(23), 6112–6128. DOI: 10.1039/c1dt10379b.
  • Mirshojaei, S. F.; Ahmadi, A.; Morales-Avila, E. Mariana Ortiz-Reynoso & Horacio Reyes-Perez. J. Drug. Targeting. 2016, 24(2), 91–101. DOI: 10.3109/1061186X.2015.1048516.
  • Banerjee, S.; Pillai, M. R. A. Knapp, F. F. Lutetium-177 Therapeutic Radiopharmaceuticals: Linking Chemistry, Radiochemistry and Practical Applications. Chem. Rev. 2015, 115(8), 2934–2974. DOI: 10.1021/cr500171e.
  • Ercan, M. T.; Caglar, M. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Curr. Pharm. Design. 2000, 6(11), 1085–1121(37). DOI: 10.2174/1381612003399833.
  • Paterson, B. M.; Donnelly, P. S. Copper (II)-Bis (Thiosemicarbazonato) Complexes As Antibacterial Agents: Insights into Their Mode of Action and Potential As Therapeutics. Chem. Soc. Rev. 2011, 40(5), 3005–3018. DOI: 10.1039/c0cs00215a.
  • Lin, M.-Y.; Hsieh, H.-H.; Chen, J.-C.; Chen, C.-L.; Sheu, N.-C.; Huang, W.-S.; Ho, S.-Y.; Chen, T.-W.; Lee, Y.-J.; Wu, C.-Y. Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics. 2021, 13(11), 1903. DOI: 10.3390/pharmaceutics13111903.
  • Sano, K.; Kanada, Y.; Kanazaki, K.; Ding, N.; Ono, M.; Saji, H. Radiolabelling of Nanomaterials for Medical Imaging and Therapy. J. Nucl. Med. 2017, 58(9), 1380–1385. DOI: 10.2967/jnumed.117.189993.
  • Hafelia, U. O. J.; Pauer, G.; Unnithan, J.; Prayson, R. A. Fibrin Glue System for Adjuvant Brachytherapy of Brain Tumors with 188Re and 186Re-Labeled Microspheres. Euro. J. Pharm. Biopharm. 2007, 65(3), 282–288. DOI: 10.1016/j.ejpb.2006.10.016.
  • Wilbur, D. S.; Adam, M. J. Highly Effective Liquid and Solid Phase Extraction Methods to Concentrate Radioiodine Isotopes for Radioiodination Chemistry. Radiochim. Acta. 2019, 107, 9–11. DOI: 10.1515/ract-0004.
  • Acharya, S. H.; Avenell, A.; Philip, S.; Burr, J.; Bevan, J. S.; Abraham, P. Radioiodine Therapy (RAI) for Graves’ Disease (GD) and the Effect on Ophthalmopathy: A Systematic Review. Clin. Endocrinology. 2008, 69(6), 943–950. DOI: 10.1111/j.1365-2265.2008.03279.x.
  • Bonnema, S. J.; Hegedüs, L. Radioiodine Therapy in Benign Thyroid Diseases: Effects, Side Effects, and Factors Affecting Therapeutic Outcome. Endocrine. Rev. 2012, 33(6), 920–980. DOI: 10.1210/er.2012-1030.
  • Rivkees, S. A.; Sklar, C.; Freemark, M. The Management of Graves’ Disease in Children, with Special Emphasis on Radioiodine Treatment. J. Clin. Endocrinol &Metabol. 1998, 83(11), 3767–3776. DOI: 10.1210/jcem.83.11.5239.
  • Solomon, B.; Glinoer, D.; Lagasse, R.; Wartofsky, L. Current Trends in the Management of Graves’ Disease. J. Clin. Endocrinol &Metabol. 1990, 70(6), 1518–1524. DOI: 10.1210/jcem-70-6-1518.
  • Fonslet, J.; Koziorowski, J. Dry Distillation of Radioiodine from TeO2 Targets, Appl. Sci. 2013, 3(4), 675–683. DOI: 10.3390/app3040675.
  • Shikata, E.; Amano, H. J. Dry-Distillation of Iodine-131 from Several Tellurium Compounds. Nucl. Sci. Technol. 1973, 10(2), 80–88. DOI: 10.1080/18811248.1973.9735382.
  • Ambade, R. N.; Shinde, S. N.; Khan, M. S. A.; Lohar, S. P.; Vimalnath, K. V.; Joshi, P. V.; Chakraborty, S.; Pillai, M. R. A.; Dash, A. J. Radioanal. Nucl. Chem. DOI: 10.1007/s10967-014-3423-4.
  • Pahan, S.; Sengupta, A.; Ali, S. K. M.; Debnath, A. K.; Banerjee, D.; Vincent, T.; Sugilal, G.; Kaushik, C. P. The Application of Food/agro-Waste and Spent Household Products for the Environmentally Benign Separation of Thorium. Sep. Purif. Technol. 2021, 279, 119703. DOI: 10.1016/j.seppur.2021.119703.
  • Salunkhe, G.; Sengupta, A.; Boda, A.; Paz, R.; Gupta, N. K.; Leyva, C. R. S.; Chauhan, R. S.; Ali, S. K. M. Application of Hybrid MOF Composite in Extraction of F-Block Elements: Experimental and Computational Investigation. Chemosphere. 2022, 287, 132232. DOI: 10.1016/j.chemosphere.2021.132232.
  • Hashmi Sengupta, A.; Chauhan, R. S. Cost Effective Separation of Uranium Ion Using Exhausted Household Products and Natural Bio-Sorbent. J. Radioanal. Nucl. Chem. 2021, 329(3), 1361–1373. DOI: 10.1007/s10967-021-07899-2.
  • Gupta, N. K.; Viltres, H.; Lópezc, Y. C.; Salunkhe, G.; Sengupta, A. Magnetic CoFe2o4/Graphene Oxide Nanocomposite for Highly Efficient Separation of F-Block Elements. Surf. Interfaces. 2021, 23, 100916. DOI: 10.1016/j.surfin.2020.100916.
  • Pahan, S.; Sengupta, A.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Musharaf Ali, S. K.; Khan, P. N.; Debnath, A. K.; Banerjee, D.; Vincent, T., et al. Exploring Functionalized Titania for Task Specific Application of Efficient Separation of Trivalent F-Block Elements. New. J. Chem. 2020, 44(16), 6151–6162. DOI: 10.1039/D0NJ01014F.
  • Kamaz, M.; Rocha, P.; Sengupta, A.; Qian, X.; Wickramasinghe, R. S. Application of Silica-Chromium Oxide Composite for the Sorption of Toxic Metals from Aqueous Stream. Sep. Sci. Technol. 2018, 53(9), 1372–1382. DOI: 10.1080/01496395.2018.1433688.
  • Robshaw, T. J.; Turner, J.; Kearney, S.; Walkley, B.; Sharrad, C. A.; Ogden, M. D. Capture of Aqueous Radioiodine Species by Metallated Adsorbents from Wastestreams of the Nuclear Power Industry: A Review. Sn. Appl. Sci. 2021, 3(11), 843.
  • Tauanov, Z.; Inglezakis, V. J. Removal of Iodide from Water Using Silver Nanoparticles-Impregnated Synthetic Zeolites. Sci. Total Environ. 2019, 682, 259–270. DOI: 10.1016/j.scitotenv.2019.05.106.
  • Yin, Y.; Yang, Y.; Liu, G.; Chen, H.; Gong, D.; Ying, Y.; Fan, J.; Liu, S.; Li, Z.; Wang, C., et al. Ultrafast Solid-Phase Synthesis of 2D Pyrene-Alkadiyne Frameworks Towards Efficient Capture of Radioactive Iodine. Chem. Engin. J. 2022, 441, 135996. DOI: 10.1016/j.cej.2022.135996.
  • Yao, C.; Wang, W.; Zhang, S.-R.; Li, H.-Y.; Xu, Y.-H.; Su, Z.-M.; Che, G.-B. A Multifunctional Microporous Metal–Organic Framework: Efficient Adsorption of Iodine and Column-Chromatographic Dye Separation. R.S.C. Adv. 2018, 8(63), 36400–36406. DOI: 10.1039/C8RA04648D.
  • Lima, E. C.; Gomes, A. A.; Tran, H. N. Comparison of the Nonlinear and Linear Forms of the van’t Hoff Equation for Calculation of Adsorption Thermodynamic Parameters (∆S° and ∆H°. J. Mol. Liq. 2020, 311(1), 113315. DOI: 10.1016/j.molliq.2020.113315.
  • MacQueen, J. T. Some Observations Concerning the van’t Hoff Equation. J. Chem. Educ. 1967, 44(12), 755. DOI: 10.1021/ed044p755.
  • Kulkarni, P.; Watwe, V.; Pathak, G.; Sayyad, S.; Kulkarni, S. Evaluation of Thermodynamic Parameters via Reaction Stoichiometry and the Corrected Langmuir Parameter for Sorption of Cu(ii) on Chitosan and Chitosan Blended PVA Films. J. Mol. Liq. 2020, 317, 113962. DOI: 10.1016/j.molliq.2020.113962.
  • Gupta, N. K.; Sengupta, A. Microcolumn Lanthanide Separation Using Bis-(2-Ethylhexyl) Phosphoric Acid Functionalized Ordered Mesoporous Carbon Materials. Hydromet. 2017, 171, 8–15. DOI: 10.1016/j.hydromet.2017.03.016.
  • Kumar, P.; Sengupta, A.; Deb, S.; Musharaf Ali, A. K. Poly (Amidoamine) Dendrimer Functionalized Carbon Nanotube for Efficient Sorption of Trivalent F-Elements: A Comparison Between 1st and 2nd Generation. Chem. Selects. 2017, 2(3), 975–985. DOI: 10.1002/slct.201601550.
  • Kumar, P.; Sengupta, A.; Singha Deb, A. K.; Dasgupta, K.; Ali, S. K. M. Sorption Behaviour of Pu4+ and PuO22+ on Amido Amine-Functionalized Carbon Nanotubes: Experimental and Computational Study. R.S.C. Adv. 2016, 6(108), 107011. DOI: 10.1039/C6RA24184K.
  • Gupta, N. K.; Sengupta, A.; Boda, A.; Adya, V. C.; Ali, M. Oxidation State Selective Sorption Behavior of Plutonium Using N,N-Dialkylamide Functionalized Carbon Nanotubes. R.S.C. Adv. 2016, 6(82), 78692–78701. DOI: 10.1039/C6RA17773E.
  • Matyas, J.; Fryxell, G. E.; Busche, B. J.; Wallace, K.; Fifeld, L. S. (2011) Functionalized silica aerogels: advanced materials to capture and immobilize radioactive iodine. In 35th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, Florida, USA, Jan 23–28 2011, vol. 32, in Ceramic Engineering and Science Proceedings, 2011, p 23–32
  • Mao, P.; Liu, Y.; Jiao, Y.; Chen, S. W.; Yang, Y. Enhanced Uptake of Iodide on Ag@Cu2O Nanoparticles. Chemosphere. 2016, 164, 396–403. DOI: 10.1016/j.chemosphere.2016.08.116.
  • Mao, P.; Qi, L.; Liu, X.; Liu, Y.; Jiao, Y.; Chen, S.; Yang, Y. Synthesis of Cu/Cu2O Hydrides for Enhanced Removal of Iodide from Water. J. Hazard. Mater. 2017, 328, 21–28. DOI: 10.1016/j.jhazmat.2016.12.065.
  • Lefevre, G.; Alnot, M.; Ehrhardt, J. J.; Bessiere, J. Uptake of Iodide by a Mixture of Metallic Copper and Cupric Compounds. Environ. Sci. Technol. 1999, 33(10), 1732–1737. DOI: 10.1021/es981034y.
  • Kodama, H. Removal of Iodide Ion from Simulated Radioactive Liquid Waste. Czech. J. Phys. 1999, 49(S1), 971–977. DOI: 10.1007/s10582-999-1026-z.
  • Pei, C.; Ben, T.; Xua, S.; Qiu, S. Ultrahigh Iodine Adsorption in Porous Organic Frameworks. J. Mater. Chem. A. 2014, 2(20), 7179–7187. DOI: 10.1039/C4TA00049H.
  • Saeed, M. M.; Ahmed, M.; Ghaffar, A. Adsorption Profile of Molecular Iodine and Iodine Number of Polyurethane Foam. Spe. Sci. Technol. 2003, 38(3), 715–731. DOI: 10.1081/SS-120016661.
  • Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, A. Methylene Blue and Iodine Adsorption Onto an Activated Desert Plant. Bioresource. Technol. 2008, 99(17), 8441–8444. DOI: 10.1016/j.biortech.2008.02.053.
  • Alsalbokh, M.; Fakeri, N.; Lawson, S.; Rownaghi, A. A.; Rezaei, F. Adsorption of Iodine from Aqueous Solutions by Aminosilane-Grafted Mesoporous Alumina. Chem. Eng. J. 2021, 415, 128968. DOI: 10.1016/j.cej.2021.128968.
  • Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J. F. Radiation and Radical Chemistry of Ionic Liquids for Energy Applications. J. Phys. Chem B. 2012, 116(30), 9043–9055. DOI: 10.1021/jp302151c.
  • Ansari, S. A.; Mohapatra, P. K. Evaluation of an Extraction Chromatographic Resin Containing CMPO and Ionic Liquid for Actinide Ion Uptake from Acidic Feeds: Part II. Batch Actinide Sorption, Radiolytic Degradation and Column Studies. Radiochim. Acta. 2014, 102(7), 589–597. DOI: 10.1515/ract-2013-2192.
  • Xiong, L.-P.; LvMeigu, K.; Chu-TingYang, F.-C.; JunHan, S. Efficient Capture of Actinides from Strong Acidic Solution by Hafnium Phosphonate Frameworks with Excellent Acid Resistance and Radiolytic Stability. Chem. Engin. J. 2019, 355, 159–169. DOI: 10.1016/j.cej.2018.08.118.
  • Chiarizia, R.; Horwitz, E. P. Understanding the Structural Chemistry of Actinide Phosphonates. Solv. Extr. Ion Exchange. 2000, 18(1), 109–132. DOI: 10.1080/07366290008934675.
  • Artiushenko, O.; Kostenko, L.; Zaitsev, V. Influence of Competitive Eluting Agents on REEs Recovery from Silica Gel Adsorbent with Immobilized Aminodiphosphonic Acid. J. Environ. Chem. Engin. 2020, 8(4), 103883. DOI: 10.1016/j.jece.2020.103883.
  • Michalski, R. Application of Ion Chromatography in Clinical Studies and Pharmaceutical Industry. Crit. Rev. Anal. Chem. 2009, 39(4), 230–250. DOI: 10.1080/10408340903032453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.