30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green nanomaterial-based adsorbent for Cs and Pb removal: Synthesis from industrial waste producing high-value products

, ORCID Icon, , , , , , , & show all
Received 18 Nov 2023, Accepted 24 Apr 2024, Published online: 05 May 2024

References

  • Lumley, R. Fundamentals of Aluminium Metallurgy, 1st ed.; Woodhead Publishing: Cambridge, 2011.
  • Satish Reddy, M.; Neeraja, D. Aluminum Residue Waste for Possible Utilisation As a Material: A Review. Sadhana - Academy Proceedings in Engineering Sciences. 2018, 43:1–8, doi:10.1007/s12046-018-0866-2.
  • Tsakiridis, P. E. Aluminium Salt Slag Characterization and Utilization - a Review. J. Hazard. Mater. 2012, 217–218, 1–10. DOI: 10.1016/j.jhazmat.2012.03.052.
  • Garside, M. Recycling Rate of Metals and Glass Worldwide Between 2015 and 2017, by Region. https://www.statista.com/statistics/1106333/global-recycling-rate-of-permanent-materials-by-region/ (accessed Feb 7, 2020).
  • Sánchez-Hernández, R.; Padilla, I.; López-Andrés, S.; López-Delgado, A. Eco-Friendly Bench-Scale Zeolitization of an Al-Containing Waste into Gismondine-Type Zeolite Under Effluent Recycling. J. Clean. Prod. 2017, 161, 792–802. DOI: 10.1016/j.jclepro.2017.05.201.
  • Sánchez-Hernández, R.; López-Delgado, A.; Padilla, I.; Galindo, R.; López-Andrés, S. One-Step Synthesis of NaP1, SOD and ANA from a Hazardous Aluminum Solid Waste. Micro. Mesoporous Mater. 2016, 226, 267–277. DOI: 10.1016/j.micromeso.2016.01.037.
  • Gao, S.; Peng, H.; Song, B.; Zhang, J.; Wu, W.; Vaughan, J.; Zardo, P.; Vogrin, J.; Tulloch, S.; Zhu, Z. Synthesis of Zeolites from Low-Cost Feeds and Its Sustainable Environmental Applications. J. Environ. Chem. Eng. 2023, 11, 108995. DOI: 10.1016/j.jece.2022.108995.
  • Yamaura, M.; Fungaro, D. A. Synthesis and Characterization of Magnetic Adsorbent Prepared by Magnetite Nanoparticles and Zeolite from Coal Fly Ash. J. Mater. Sci. 2013, 48(14), 5093–5101. DOI: 10.1007/s10853-013-7297-6.
  • Izidoro, J. D. C.; Fungaro, D. A.; Dos Santos, F. S.; Wang, S. Characteristics of Brazilian Coal Fly Ashes and Their Synthesized Zeolites. Fuel Process. Technol. 2012, 97, 38–44. DOI: 10.1016/j.fuproc.2012.01.009.
  • Yao, Z. T.; Ji, X. S.; Sarker, P. K.; Tang, J. H.; Ge, L. Q.; Xia, M. S.; Xi, Y. Q. A Comprehensive Review on the Applications of Coal Fly Ash. Earth Sci. Rev. 2015, 141, 105–121. DOI: 10.1016/j.earscirev.2014.11.016.
  • Liu, R. Y.; Zou, L. X.; Huang, Q.; Cao, X. ChuoYang Synthesis of Analcime from Fly Ash and Its Adsorption of Cs+ in Aqueous Solution. J. Radioanal. Nucl. Chem. 2021, 329(1), 103–113. DOI: 10.1007/s10967-021-07799-5.
  • Choi, J.-H.; Lee, C.-H. Evaluation of Sr and Cs Ions Adsorption Capacities with Zeolitic Materials Synthesized from Various Mass Ratios of NaOH to Coal Fly Ash. Environ. Eng. Res. 2021, 27(2), 200662–0. DOI: 10.4491/eer.2020.662.
  • Kumar, M. M.; Jena, H. Direct Single-Step Synthesis of Phase Pure Zeolite Na–P1, Hydroxy Sodalite and Analcime from Coal Fly Ash and Assessment of Their Cs+ and Sr2+ Removal Efficiencies. Micro. Mesoporous Mater. 2022, 333, 111738. DOI: 10.1016/j.micromeso.2022.111738.
  • Botelho Junior, A. B.; Espinosa, D. C. R.; Tenório, J. A. S. Extraction of Scandium from Critical Elements-Bearing Mining Waste: Silica Gel Avoiding in Leaching Reaction of Bauxite Residue. J. Sustainable Metall. 2021, 7(4), 1627–1642. DOI: 10.1007/s40831-021-00434-3.
  • Izidoro, J. C.; Kim, M. C.; Bellelli, V. F.; Pane, M. C.; Botelho Junior, A. B.; Espinosa, D. C. R.; Tenório, J. A. S. Synthesis of Zeolite a Using the Waste of Iron Mine Tailings Dam and Its Application for Industrial Effluent Treatment. J. Sust. Mining. 2019, 18, 277–286. DOI: 10.1016/j.jsm.2019.11.001.
  • Izidoro, J. D. C.; Fungaro, D. A.; Abbott, J. E.; Wang, S. Synthesis of Zeolites X and a from Fly Ashes for Cadmium and Zinc Removal from Aqueous Solutions in Single and Binary Ion Systems. Fuel. 2013, 103, 827–834. DOI: 10.1016/j.fuel.2012.07.060.
  • Kazemian, H.; Naghdali, Z.; Ghaffari Kashani, T.; Farhadi, F. Conversion of High Silicon Fly Ash to Na-P1 Zeolite: Alkaline Fusion Followed by Hydrothermal Crystallization. Adv. Powder Tech. 2010, 21(3), 279–283. DOI: 10.1016/j.apt.2009.12.005.
  • Zhang, X.; Li, C.; Zheng, S.; Di, Y.; Sun, Z. A Review of the Synthesis and Application of Zeolites from Coal-Based Solid Wastes. Int. J. Miner. Metall. Mater. 2022, 29(1), 1–21. DOI: 10.1007/s12613-021-2256-8.
  • Chen, W.; Song, G.; Lin, Y.; Qiao, J.; Wu, T.; Yi, X.; Kawi, S. Synthesis and Catalytic Performance of Linde-Type a Zeolite (LTA) from Coal Fly Ash Utilizing Microwave and Ultrasound Collaborative Activation Method. Catal. Today. 2022, 397–399, 407–418. DOI: 10.1016/j.cattod.2021.07.022.
  • Zhao, M.; Ma, X.; Chen, D.; Liao, Y. Preparation of Honeycomb-Structured Activated Carbon–Zeolite Composites from Modified Fly Ash and the Adsorptive Removal of Pb(ii). ACS Omega. 2022, 7(11), 9684–9689. DOI: 10.1021/acsomega.1c07192.
  • Derkowski, A.; Franus, W.; Beran, E.; Czímerová, A. Properties and Potential Applications of Zeolitic Materials Produced from Fly Ash Using Simple Method of Synthesis. Powder Tech. 2006, 166, 47–54. DOI: 10.1016/j.powtec.2006.05.004.
  • Boycheva, S. V Synthetic Zeolitic Ion-Exchangers from Coal Ash for Decontamination of Nuclear Wastewaters. BgNS Trans. 2016, 20, 132–136.
  • Gonze, M. A.; Calmon, P.; Hurtevent, P.; Coppin, F. Meta-Analysis of Radiocesium Contamination Data in Japanese Cedar and Cypress Forests Over the Period 2011–2017. Sci. Total Environ. 2021, 750, 142311. DOI: 10.1016/j.scitotenv.2020.142311.
  • Hasan, M. N.; Shenashen, M. A.; Hasan, M. M.; Znad, H.; Awual, M. R. Assessing of Cesium Removal from Wastewater Using Functionalized Wood Cellulosic Adsorbent. Chemosphere. 2021, 270, 128668. DOI: 10.1016/j.chemosphere.2020.128668.
  • Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Adsorptive Removal of Cesium from Aqueous Solution Using Oxidized Bamboo Charcoal. Water Resour. Ind. 2018, 19, 35–46. DOI: 10.1016/j.wri.2018.01.001.
  • Fungaro, D. A.; Grosche, L. C.; de C Izidoro, J. Synthesis of Calcium Silicate Hydrate Compounds from Wet Flue Gas Desulfurization (FGD) Waste. J. Appl. Mat. Tech. 2020, 1(2), 88–95. DOI: 10.31258/Jamt.1.2.88-95.
  • Lalhmunsiama; Kim, J. G.; Choi, S. S.; Lee, S. M. Recent Advances in Adsorption Removal of Cesium from Aquatic Environment. Appl. Chem. Engi. 2018, 29, 127–137. DOI: 10.14478/ace.2018.1019.
  • Sterba, J. H.; Sperrer, H.; Wallenko, F.; Welch, J. M. Adsorption Characteristics of a Clinoptilolite-Rich Zeolite Compound for Sr and Cs. J. Radioanal. Nucl. Chem. 2018, 318(1), 267–270. DOI: 10.1007/s10967-018-6096-6.
  • Wang, C. F.; Li, J. S.; Wang, L. J.; Sun, X. Y. Influence of NaOH Concentrations on Synthesis of Pure-Form Zeolite a from Fly Ash Using Two-Stage Method. J. Hazard. Mater. 2008, 155, 58–64. DOI: 10.1016/j.jhazmat.2007.11.028.
  • Lee, K. M.; Jo, Y. M. Synthesis of Zeolite from Waste Fly Ash for Adsorption of CO2. J. Mater. Cycles Waste Manag. 2010, 12(3), 212–219. DOI: 10.1007/s10163-010-0290-0.
  • Izidoro, J.; Castanho, D.; Rossati, C.; Fungaro, D.; Guilhen, S.; Nogueira, T.; Fátima Andrade, M. De Application of High-Purity Zeolite a Synthesized from Different Coal Combustion By-Products in Carbon Dioxide Capture. Int. J. EI. 2019, 2(3), 215–228. DOI: 10.2495/ei-v2-n3-215-228.
  • Kadadou, D.; Said, E. A.; Ajaj, R.; Hasan, S. W. Research Advances in Nuclear Wastewater Treatment Using Conventional and Hybrid Technologies: Towards Sustainable Wastewater Reuse and Recovery. J. Water Process Eng. 2023, 52, 103604. DOI: 10.1016/j.jwpe.2023.103604.
  • Gautam, R. K.; Jaiswal, N.; Singh, A. K.; Tiwari, I. Ultrasound-Enhanced Remediation of Toxic Dyes from Wastewater by Activated Carbon-Doped Magnetic Nanocomposites: Analysis of Real Wastewater Samples and Surfactant Effect. Environ. Sci. Pollut. Res. 2021, 28, 36680–36694. DOI: 10.1007/s11356-021-13256-3.
  • Singh, A. K.; Agrahari, S.; Gautam, R. K.; Tiwari, I. A Highly Efficient NiCo2o4 Decorated G-C3N4 Nanocomposite for Screen-Printed Carbon Electrode Based Electrochemical Sensing and Adsorptive Removal of Fast Green Dye. Environ. Sci. Pollut. Res. 2023. DOI: 10.1007/s11356-023-30373-3.
  • Gautam, R. K.; Singh, A. K.; Tiwari, I. Nanoscale Layered Double Hydroxide Modified Hybrid Nanomaterials for Wastewater Treatment: A Review. J. Mol. Liq. 2022, 350, 118505. DOI: 10.1016/j.molliq.2022.118505.
  • Gautam, R. K.; Tiwari, I. Humic Acid Functionalized Magnetic Nanomaterials for Remediation of Dye Wastewater Under Ultrasonication: Application in Real Water Samples, Recycling and Reuse of Nanosorbents. Chemosphere. 2020, 245, 125553. DOI: 10.1016/j.chemosphere.2019.125553.
  • Izidoro, J. D. C.; Miranda, S.; Guilhen, S. N.; Fungaro, D. A.; Wang, S. Treatment of Coal Ash Landfill Leachate Using Zeolitic Materials from Coal Combustion By-Products. Advan. Mater. & Tech. Envir. App. 2018, 2, 177–186.
  • Rudnicki, P.; Hubicki, Z.; Kołodyńska, D. Evaluation of Heavy Metal Ions Removal from Acidic Waste Water Streams. Chem. Eng. J. 2014, 252, 362–373. DOI: 10.1016/j.cej.2014.04.035.
  • Perez, I. D.; Anes, I. A.; Botelho Junior, A. B.; Espinosa, D. C. R. Comparative Study of Selective Copper Recovery Techniques from Nickel Laterite Leach Waste Towards a Competitive Sustainable Extractive Process. Clean Eng. Technol. 2020, 1, 100031. DOI: 10.1016/j.clet.2020.100031.
  • Botelho Junior, A. B.; Jiménez Correa, M. M.; Espinosa, D. C. R.; Dreisinger, D.; Tenório, J. A. S. Recovery of Cu(ii) from Nickel Laterite Leach Using Prereduction and Chelating Resin Extraction: Batch and Continuous Experiments. Can. J. Chem. Eng. 2019, 97(4), 924–929. DOI: 10.1002/cjce.23306.
  • Alves, D. A. S.; Botelho Junior, A. B.; Espinosa, D. C. R.; Tenório, J. A. S.; Baltazar, M. D. P. G. Copper and Zinc Adsorption from Bacterial Biomass - Possibility of Low-Cost Industrial Wastewater Treatment. Environ. Technol. 2023, 44(16), 2441–2450. DOI: 10.1080/09593330.2022.2031312.
  • Totten, G. E.; Mackenzie, D. S. Handbook of Aluminum; Eds.; In Totten, G. E. MacKenzie, D. S. 2003.
  • Shinzato, M. C.; Hypolito, R. Solid Waste from Aluminum Recycling Process: Characterization and Reuse of Its Economically Valuable Constituents. Waste. Manage. 2005, 25(1), 37–46. DOI: 10.1016/j.wasman.2004.08.005.
  • Shabani, J. M.; Babajide, O.; Oyekola, O.; Petrik, L. Synthesis of Hydroxy Sodalite from Coal Fly Ash for Biodiesel Production from Waste-Derived Maggot Oil. Catalysts. 2019, 9(12), 1–14. DOI: 10.3390/catal9121052.
  • Makgabutlane, B.; Nthunya, L. N.; Musyoka, N.; Dladla, B. S.; Nxumalo, E. N.; Mhlanga, S. D. Microwave-Assisted Synthesis of Coal Fly Ash-Based Zeolites for Removal of Ammonium from Urine. R.S.C. Adv. 2020, 10(4), 2416–2427. DOI: 10.1039/c9ra10114d.
  • Perez, I. D.; Botelho Junior, A. B.; Aliprandini, P.; Espinosa, D. C. R. Copper Recovery from Nickel Laterite with High‐Iron Content: A Continuous Process from Mining Waste. Can. J. Chem. Eng. 2020, 98(4), 957–968. DOI: 10.1002/cjce.23667.
  • Chen, T.; Zhou, Z.; Han, R.; Meng, R.; Wang, H.; Lu, W. Adsorption of Cadmium by Biochar Derived from Municipal Sewage Sludge: Impact Factors and Adsorption Mechanism. Chemosphere. 2015, 134, 286–293. DOI: 10.1016/j.chemosphere.2015.04.052.
  • Shukla, A.; Zhang, Y.-H.; Dubey, P.; Margrave, J. L.; Shukla, S. S. The Role of Sawdust in the Removal of Unwanted Materials from Water. J. Hazard. Mater. 2002, 95, 137–152. DOI: 10.1016/S0304-3894(02)00089-4.
  • Zagorodni, A. A. Ion Exchnange Materials: Properties and Application, First edition; Elsevier: Stockholm, 2012; XXXIII.
  • Shahbazi, A.; Marnani, N. N.; Salahshoor, Z. Synergistic and Antagonistic Effects in Simultaneous Adsorption of Pb(ii) and Cd(ii) from Aqueous Solutions Onto Chitosan Functionalized EDTA-Silane/MGO. Biocatal Agric. Biotechnol. 2019, 22, 101398. DOI: 10.1016/j.bcab.2019.101398.
  • Botelho Junior, A. B.; de Vicente, A.; Espinosa, D. C. R.; Tenório, J. A. S. Recovery of Metals by Ion Exchange Process Using Chelating Resin and Sodium Dithionite. Journal Of Mater. Res. & Tech. 2019, 8(5), 4464–4469. DOI: 10.1016/j.jmrt.2019.07.059.
  • Awual, M. R.; Islam, A.; Hasan, M. M.; Rahman, M. M.; Asiri, A. M.; Khaleque, M. A.; Chanmiya Sheikh, M. Introducing an Alternate Conjugated Material for Enhanced Lead(II) Capturing from Wastewater. J. Clean. Prod. 2019, 224, 920–929. DOI: 10.1016/j.jclepro.2019.03.241.
  • Rahman, M. M.; Khan, S. B.; Marwani, H. M.; Asiri, A. M.; Alamry, K. A.; Rub, M. A.; Khan, A.; Khan, A. A. P.; Qusti, A. H. Low Dimensional Ni-ZnO Nanoparticles As Marker of Toxic Lead Ions for Environmental Remediation. J. Ind. Eng. Chem. 2014, 20(3), 1071–1078. DOI: 10.1016/j.jiec.2013.06.044.
  • Khan, S. B.; Rahman, M. M.; Asiri, A. M.; Marwani, H. M.; Bawaked, S. M.; Alamry, K. A. Co3O4 Co-Doped TiO2 Nanoparticles As a Selective Marker of Lead in Aqueous Solution. New. J. Chem. 2013, 37(9), 2888–2893. DOI: 10.1039/c3nj00298e.
  • Wu, Y.; Chen, J.; Liu, Z.; Na, P.; Zhang, Z. Removal of Trace Radioactive Cs+ by Zirconium Titanium Phosphate: From Bench-Scale to Pilot-Scale. J. Environ. Chem. Eng. 2022, 10, 108073. DOI: 10.1016/j.jece.2022.108073.
  • Li, J.; Han, W.; Liu, H.; Su, M.; Chen, D.; Song, G. Simultaneous Removal of Cs(i) and U(VI) by a Novel Magnetic AMP@PDA@Fe3O4 Composite. J. Clean. Prod. 2023, 409, 137140. DOI: 10.1016/j.jclepro.2023.137140.
  • Botelho Junior, A. B.; Stopic, S.; Friedrich, B.; Tenório, J. A. S.; Espinosa, D. C. R. Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review. Metals (Basel). 2021, 11(12), 1999. DOI: 10.3390/met11121999.
  • Circle Economy. The Circularity Gap Report 2023; 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.