160
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The organoboron compounds: their Lewis acidity and catalytic activity

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Received 01 Aug 2023, Accepted 19 Mar 2024, Published online: 03 Apr 2024

References

  • Herbert, C. B. Biographical. https://www.nobelprize.org/prizes/chemistry/1979/brown/biographical/ (accessed Jul 14, 2023).
  • Suzuki, A. Facts. https://www.nobelprize.org/prizes/chemistry/2010/suzuki/facts/ (accessed Jul 14, 2023).
  • Fyfe, J. W. B; Watson, A. J. B. Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks. Chem. 2017, 3(1), 31–55. DOI: 10.1016/j.chempr.2017.05.008.
  • Stephan, D. W. Discovery of Frustrated Lewis Pairs: Intermolecular FLPs for Activation of Small Molecules. In Frustrated Lewis Pairs I: Uncovering and Understanding; Erker, G., Stephan, D. W., Eds.; Springer: Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 1–44.
  • Hall, D. G. Ed., Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co; 2011.
  • Welch, G. C.; Stephan, D. W. Facile Heterolytic Cleavage of Dihydrogen by Phosphines and Boranes. J. Am. Chem. Soc 2007, 129(7), 1880–1881. DOI: 10.1021/ja067961j.
  • Greb, L. Lewis Superacids: Classifications, Candidates, and Applications. Chem. Eur. J. 2018, 24(68), 17881–17896. DOI: 10.1002/chem.201802698.
  • Altshuller, A. P. Thermodynamic Properties of Alkali Metal Fluoborates and the Fluoborate Ion. J. Am. Chem. Soc. 1955, 77(23), 6187–6188. DOI: 10.1021/ja01628a025.
  • Bills, J. L.; Cotton, F. A. The Heat of Formation of Potassium Fluoroborate. J. Phys. Chem. 1960, 64(10), 1477–1479. DOI: 10.1021/j100839a030.
  • Haartz, J. C.; McDaniel, D. H. Fluoride Ion Affinity of Some Lewis Acids. J. Am. Chem. Soc. 1973, 95(26), 8562–8565. DOI: 10.1021/ja00807a011.
  • Larson, J. W.; McMahon, T. B. Fluoride and Chloride Affinities of Main Group Oxides, Fluorides, Oxofluorides, and Alkyls. Quantitative Scales of Lewis Acidities from Ion Cyclotron Resonance Halide-Exchange Equilibria. J. Am. Chem. Soc. 1985, 107(4), 766–773. DOI: 10.1021/ja00290a005.
  • Mallouk, T. E.; Rosenthal, G. L.; Mueller, G.; Brusasco, R.; Bartlett, N. Fluoride Ion Affinities of Germanium Tetrafluoride and Boron Trifluoride from Thermodynamic and Structural Data for (SF3)2GeF6, ClO2GeF5, and ClO2BF4. Inorg. Chem. 1984, 23(20), 3167–3173. DOI: 10.1021/ic00188a028.
  • Couchman, S. A.; Wilson, D. J. D.; Dutton, J. L. Is the Perfluorinated Trityl Cation Worth a Revisit? A Theoretical Study on the Lewis Acidities and Stabilities of Highly Halogenated Trityl Derivatives. Eur. J. Org. Chem. 2014, 2014(18), 3902–3908. DOI: 10.1002/ejoc.201402263.
  • Cameron, T. S.; Deeth, R. J.; Dionne, I.; Du, H.; Jenkins, H. D. B.; Krossing, I.; Passmore, J.; Roobottom, H. K. B. Structure, and Energetics of Gaseous E82+ and of Solid E8(AsF6)2 (E = S, Se). Inorg. Chem 2000, 39(25), 5614–5631. DOI: 10.1021/ic990760e.
  • Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J. Estimation of Enthalpy Data for Reactions Involving Gas Phase Ions Utilizing Lattice Potential Energies:  Fluoride Ion Affinities (FIA) and pF- Values of mSbF5(l) and mSbF5(g) (m = 1, 2, 3), AsF5(g), AsF5·SO2(c). Standard Enthalpies of Formation:  ΔfH°(SbmF5m+1−,g) (m = 1, 2, 3), ΔfH°(AsF6−,g), and ΔfH°(NF4+,g). Inorg. Chem 2003, 42(9), 2886–2893. DOI: 10.1021/ic0206544.
  • Gusev, D. G.; Ozerov, O. V. Calculated Hydride and Fluoride Affinities of a Series of Carbenium and Silylium Cations in the Gas Phase and in C6H5Cl Solution. Chem. Eur. J. 2011, 17(2), 634–640. DOI: 10.1002/chem.201000696.
  • Christe, K. O.; Dixon, D. A.; McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. On a Quantitative Scale for Lewis Acidity and Recent Progress in Polynitrogen Chemistry. J. Fluorine Chem. 2000, 101(2), 151–153. DOI: 10.1016/s0022-1139(99)00151-7.
  • Larson, J. W.; McMahon, T. B. Trends in Gas-phase Fluoride Ion Affinities of Main-Group Oxyfluorides and Fluoride Sulfides. Generation and Characterization of the Fluoride Adducts of FAsO, FPO, FPO2, F2SiO, F4SO, FBO, F2SiS, FPS, FAsS, F2S2, and S2O by Ion Cyclotron Resonance Addition-elimination Reactions. Inorg. Chem 1987, 26(24), 4018–4023. DOI: 10.1021/ic00271a011.
  • Krossing, I.; Raabe, I. Relative Stabilities of Weakly Coordinating Anions: A Computational Study. Chem. Eur. J. 2004, 10(20), 5017–5030. DOI: 10.1002/chem.200400087.
  • Muller, L. O.; Himmel, D.; Stauffer, J.; Steinfeld, G.; Slattery, J.; Santiso-Quinones, G.; Brecht, V.; Krossing, I. Simple Access to the Non-oxidizing Lewis Superacid PhF -> Al(ORF)3 (RF = C(CF3)3). Angew. Chem. Int. Ed. 2008, 47(40), 7659–7663. DOI: 10.1002/anie.200800783.
  • Körte, L. A.; Schwabedissen, J.; Soffner, M.; Blomeyer, S.; Reuter, C. G.; Vishnevskiy, Y. V.; Neumann, B.; Stammler, H.-G.; Mitzel, N. W. Tris(perfluorotolyl)borane - A Boron Lewis Superacid. Angew. Chem. Int. Ed. 2017, 56(29), 8578–8582. DOI: 10.1002/anie.201704097.
  • Frohn, H.-J.; Bilir, V.; Westphal, U. Two New Types of Xenon-Carbon Species: The Zwitterion, 1-(Xe+)C6F4-4-(BF3–), and the Dication, [1,4-(Xe)2C6F4]2+. Inorg. Chem 2012, 51(21), 11251–11258. DOI: 10.1021/ic3017112.
  • Finze, M.; Bernhardt, E.; Zahres, M.; Willner, H. Rearrangement Reactions of the Transient Lewis Acids (CF3)3B and (CF3)3BCF2: An Experimental and Theoretical Study. Inorg. Chem 2004, 43(2), 490–505. DOI: 10.1021/ic0350640.
  • Hwang, I.-C.; Seppelt, K. Gold Pentafluoride: Structure and Fluoride Ion Affinity. Angew. Chem. Int. Ed. 2001, 40(19), 3690–3693. DOI: 10.1002/1521-3773(20011001)40:19<3690::AID-ANIE3690>3.0.CO;2-5.
  • Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Marks, T. J.; Nickias, P. N. New Perfluoroarylborane Activators for Single-site Olefin Polymerization. Acidity and Cocatalytic Properties of a “Superacidic” Perfluorodiboraanthracene. Organometallics. 2002, 21(20), 4159–4168. DOI: 10.1021/om020079b.
  • Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Nickias, P. N.; Marks, T. J. Organo-Lewis Acid Cocatalysts in Single-Site Olefin Polymerization - A Highly Acidic Perfluorodiboraanthracene. Angew. Chem. Int. Ed. 2000, 39(7), 1312–1316. DOI: 10.1002/(SICI)1521-3773(20000403)39:7<1312::AID-ANIE1312>3.0.CO;2-4.
  • Sivaev, I. B.; Bregadze, V. I. Lewis acidity of boron compounds. Coord. Chem. Rev. 2014, 270, 75–88. DOI: 10.1016/j.ccr.2013.10.017.
  • Williams, V. C.; Piers, W. E.; Clegg, W.; Elsegood, M. R. J.; Collins, S.; Marder, T. B. New Bifunctional Perfluoroaryl Boranes. Synthesis and Reactivity of the Ortho-Phenylene-Bridged Diboranes 1,2-[B(C6F5)2]2C6X4 (X = H, F)’. J. Am. Chem. Soc 1999, 121(13), 3244–3245. DOI: 10.1021/ja990082v.
  • Mayer, R. J.; Hampel, N.; Ofial, A. R. Lewis Acidic Boranes, Lewis Bases, and Equilibrium Constants: A Reliable Scaffold for a Quantitative Lewis Acidity/Basicity Scale. Chem. Eur. J. 2021, 27(12), 4070–4080. DOI: 10.1002/chem.202003916.
  • Böhrer, H.; Trapp, N.; Himmel, D.; Schleep, M.; Krossing, I. From Unsuccessful H2-activation with FLPs Containing B(Ohfip)3 to a Systematic Evaluation of the Lewis Acidity of 33 Lewis Acids Based on fluoride, Chloride, hydride and methyl ion affinities. Dalton Trans. 2015, 44(16), 7489–7499. DOI: 10.1039/C4DT02822H.
  • Vanka, K.; Chan, M. S. W.; Pye, C. C; Ziegler, T. A Density Functional Study of Ion-pair Formation and Dissociation in the Reaction Between Boron- and Aluminum-based Lewis Acids with (1,2-Me2Cp)2ZrMe2. Organometallics. 2000, 19(10), 1841–1849. DOI: 10.1021/om990830p.
  • Li, L. T.; Marks, T. J. New Organo-Lewis Acids. Tris (β-perfluoronaphthyl)borane (PNB) as a Highly Active Cocatalyst for Metallocene-mediated Ziegler-Natta α-olefin Polymerization. Organometallics. 1998, 17(18), 3996–4003. DOI: 10.1021/om980229b.
  • Chase, P. A.; Henderson, L. D.; Piers, W. E.; Parvez, M.; Clegg, W.; Elsegood, M. R. J. Bifunctional Perfluoroaryl Boranes: Synthesis and Coordination Chemistry with Neutral Lewis base Donors. Organometallics. 2006, 25(2), 349–357. DOI: 10.1021/om050764t.
  • Morgan, M. M.; Marwitz, A. J. V.; Piers, W. E.; Parvez, M. Comparative Lewis Acidity in Fluoroarylboranes: B(o-HC6F4)3, B(p-HC6F4)3, and B(C6F5)3. Organometallics. 2013, 32(1), 317–322. DOI: 10.1021/om3011195.
  • Parks, D. J.; Piers, W. E. Tris(Pentafluorophenyl)boron-Catalyzed Hydrosilylation of Aromatic Aldehydes, Ketones, and Esters. J. Am. Chem. Soc 1996, 118(39), 9440–9441. DOI: 10.1021/ja961536g.
  • Kiricsi, I.; Flego, C.; Pazzuconi, G.; Parker, W. O.; Millini, R.; Perego, C.; Bellussi, G. Progress Toward Understanding Zeolite-beta Acidity - an IR and 27Al NMR Spectroscopic Study. J. Phys. Chem. 1994, 98(17), 4627–4634. DOI: 10.1021/j100068a024.
  • Knozinger, H.; Huber, S. IR Spectroscopy of Small and Weakly Interacting Molecular Probes for Acidic and Basic Zeolites. J. Chem. Soc. Faraday Trans. 1998, 94(15), 2047–2059. DOI: 10.1039/a802189i.
  • Morterra, C.; Magnacca, G. A Case study: Surface Chemistry and Surface Structure of Catalytic Aluminas, as Studied by Vibrational Spectroscopy of Adsorbed Species. Catal. Today. 1996, 27(3–4), 497–532. DOI: 10.1016/0920-5861(95)00163-8.
  • Pelmenschikov, A. G.; Vansanten, R. A.; Janchen, J.; Meijer, E. CD3CN as a Probe of Lewis and Brønsted Acidity of Zeolites. J. Phys. Chem. 1993, 97(42), 11071–11074. DOI: 10.1021/j100144a028.
  • Panchenko, V. N.; Timofeeva, M. N.; Jhung, S. H. Acid-base Properties and Catalytic Activity of Metal-Organic Frameworks: A View from Spectroscopic and Semiempirical Methods. Catalysis Rev. 2016, 58(2), 209–307. DOI: 10.1080/01614940.2016.1128193.
  • Paukshtis, E. A.; Yurchenko, E. N. Study of the Acid–Base Properties of Heterogeneous Catalysts by Infrared Spectroscopy. Russ. Chem. Rev. 1983, 52(3), 242–258. DOI: 10.1070/RC1983v052n03ABEH002812.
  • Jacobsen, H.; Berke, H.; Doring, S.; Kehr, G.; Erker, G.; Frohlich, R.; Meyer, O. Lewis Acid Properties of Tris(pentafluorophenyl)borane. Structure and Bonding in L-B(C6F5)3 Complexes. Organometallics. 1999, 18(9), 1724–1735. DOI: 10.1021/om981033e.
  • Lee, C. H.; Lee, S. J.; Park, J. W.; Kim, K. H.; Lee, B. Y.; Oh, J. S. Preparation of Al(C6F5)3 and its Use for the Modification of Methylalumoxane. J. Mol. Catal A Chem. 1998, 132(2), 231–239. DOI: 10.1016/S1381-1169(97)00277-X.
  • Purcell, K. F.; Drago, R. S. Studies of the Bonding in Acetonitrile Adducts. J. Am. Chem. Soc 1966, 88(5), 919–924. DOI: 10.1021/ja00957a010.
  • Shriver, D. F.; Swanson, B. Nature of the Donor-Acceptor Interaction in Boron Trihalide Complexes. Vibrational Spectra and Vibrational Analysis of Acetonitrile-Boron Trichloride and Acetonitrile-Boron Tribromide. Inorg. Chem 1971, 10(7), 1354–1365. DOI: 10.1021/ic50101a008.
  • Swanson, B.; Shriver, D. F. Vibrational Spectra, Vibrational Analysis and Bonding in Acetonitrile-Boron Trifluoride. Inorg. Chem 1970, 9(6), 1406–1416. DOI: 10.1021/ic50088a023.
  • The National Institute of Standards and Technology (NIST) is an agency of the U.S. Commerce Department. https://webbook.nist.gov accessed Jul 14, 2023.
  • Branch, C. S.; Bott, S. G.; Barron, A. R. Group 13 Trihalide Complexes of 9-Fluorenone: a Comparison of Methods for Assigning Relative Lewis Acidity. J. Organomet. Chem. 2003, 666(1–2), 23–34. DOI: 10.1016/s0022-328x(02)02029-6.
  • Gutmann, V. Solvent Effects on the Reactivities of Organometallic Compounds. Coord. Chem. Rev. 1976, 18(2), 225–255. DOI: 10.1016/S0010-8545(00)82045-7.
  • Mayer, U.; Gutmann, V.; Gerger, W. The Acceptor Number - A Quantitative Empirical Parameter for the Electrophilic Properties of Solvents. Monats. Chem. Chem. Monthly. 1975, 106(6), 1235–1257. DOI: 10.1007/BF00913599.
  • Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S. A Convenient NMR Method for the Measurement of Lewis Acidity at Boron Centres: Correlation of reaction Rates of Lewis Acid Initiated Epoxide Polymerizations with Lewis Acidity. Polymer. 1996, 37(20), 4629–4631. DOI: 10.1016/0032-3861(96)00323-0.
  • Britovsek, G. J. P.; Ugolotti, J.; White, A. J. P. From B(C6F5)3 to B(OC6F5)3:  Synthesis of (C6F5)2BOC6F5 and C6F5B(OC6F5)2 and Their Relative Lewis Acidity. Organometallics. 2005, 24(7), 1685–1691. DOI: 10.1021/om049091p.
  • Mewald, M.; Frohlich, R.; Oestreich, M. An Axially Chiral, Electron-Deficient Borane: Synthesis, Coordination Chemistry, Lewis Acidity, and Reactivity. Chem. Eur. J. 2011, 17(34), 9406–9414. DOI: 10.1002/chem.201100724.
  • Ullrich, M.; Lough, A. J.; Stephan, D. W. Free, Heterolytic Activation of H2 at Room Temperature. J. Am. Chem. Soc. 2009;131(1):52–53. DOI:10.1021/ja808506t.
  • Beckett, M. A.; Rugen-Hankey, M. P.; Strickland, G. C.; Varma, K. S. Lewis Acidity in Haloalkyl Orthoborate and Metaborate Esters. Phosphorus Sulfur Silicon Relat. Elem. 2001, 169(1), 113–116. DOI: 10.1080/10426500108546603.
  • Beckett, M. A.; Brassington, D. S.; Owen, P.; Hursthouse, M. B.; Light, M. E.; Malik, K. M. A.; Varma, K. S. π-Bonding in B-O ring Species: Lewis Acidity of Me3B3O3, Synthesis of Amine Me3B3O3 Adducts, and the Crystal and Molecular Structure of Me3B3O∙NH2iBu∙MeB(OH)2. J. Organomet. Chem. 1999, 585(1), 7–11. DOI: 10.1016/s0022-328x(99)00182-5.
  • Beckett, M. A.; Owen, P.; Varma, K. S. Synthesis and Lewis Acidity of Triorganosilyl and Triorganostannyl Esters of Orthoboric, Metaboric, and Arylboronic Acids. J. Organomet. Chem. 1999, 588(1), 107–112. DOI: 10.1016/s0022-328x(99)00352-6.
  • Diemoz, K. M.; Franz, A. K. NMR Quantification of Hydrogen-Bond-Activating Effects for Organocatalysts including Boronic Acids. J. Org. Chem. 2019, 84(3), 1126–1138. DOI: 10.1021/acs.joc.8b02389.
  • Ashley, A. E.; Herrington, T. J.; Wildgoose, G. G.; Zaher, H.; Thompson, A. L.; Rees, N. H.; Krämer, T.; O’Hare, D. Separating Electrophilicity and Lewis Acidity: The Synthesis, Characterization, and Electrochemistry of the Electron Deficient Tris(aryl)boranes B(C6F5)3-n(C6Cl5)n (n = 1–3). J. Am. Chem. Soc 2011, 133(37), 14727–14740. DOI: 10.1021/ja205037t.
  • Binding, S. C.; Zaher, H.; Mark Chadwick, F.; O’Hare, D. Heterolytic Activation of Hydrogen Using Frustrated Lewis Pairs Containing Tris(2,2′,2′′-perfluorobiphenyl)borane. Dalton Trans. 2012, 41(30), 9061–9066. DOI: 10.1039/C2DT30334E.
  • Schnurr, A.; Bolte, M.; Lerner, H.-W.; Wagner, M. Cyclic Phosphonium Bis(fluoroaryl)boranes - Trends in Lewis Acidities and Application in Diels-Alder Catalysis. Eur. J. Inorg. Chem. 2012, 2012(1), 112–120. DOI: 10.1002/ejic.201101098.
  • Herrington, T. J.; Thom, A. J. W.; White, A. J. P.; Ashley, A. E. Novel H2 activation by a tris[3,5-bis(trifluoromethyl)phenyl]borane frustrated Lewis pair. Dalton Trans. 2012, 41(30), 9019–9022. DOI: 10.1039/C2DT30384A.
  • Greb, L.; Daniliuc, C. G.; Bergander, K; Paradies, J. Functional-group Tolerance in Frustrated Lewis Pairs: Hydrogenation of Nitroolefins and Acrylates. Angew. Chem. Int. Ed. 2013, 52(22), 5876–5879. DOI: 10.1002/anie.201210175.
  • Horton, P. N.; Hursthouse, M. B.; Beckett, M. A.; Rugen-Hankey, M. P. Pentafluorophenylboronic Acid. Acta Crystallograph. Section E. 2004, 60(12), o2204–o2206. DOI: 10.1107/S1600536804022408.
  • Benton, A.; Watson, J. D.; Mansell, S. M.; Rosair, G. M.; Welch, A. J. The Lewis Acidity of Borylcarboranes. J. Organomet. Chem. 2019, 907, 121057. DOI: 10.1016/j.jorganchem.2019.121057.
  • Mummadi, S.; Kenefake, D.; Diaz, R.; Unruh, D. K.; Krempner, C. Interactions of Verkade’s Superbase with Strong Lewis Acids: From Labile Mono- and Binuclear Lewis Acid–Base Complexes to Phosphenium Cations. Inorg. Chem 2017, 56(17), 10748–10759. DOI: 10.1021/acs.inorgchem.7b01719.
  • Lu, Z.; Cheng, Z.; Chen, Z.; Weng, L.; Li, Z. H.; Wang, H. Heterolytic Cleavage of Dihydrogen by “Frustrated Lewis Pairs” Comprising Bis(2,4,6-tris(trifluoromethyl)phenyl)borane and Amines: Stepwise versus Concerted Mechanism. Angew. Chem. Int. Ed. 2011, 50(51), 12227–12231. DOI: 10.1002/anie.201104999.
  • Adamczyk-Wozniak, A.; Jakubczyk, M.; Sporzynski, A.; Zukowska, G. Quantitative determination of the Lewis acidity of phenylboronic catechol esters - Promising anion receptors for polymer electrolytes. Inorg. Chem. Commun. 2011, 14(11), 1753–1755. DOI: 10.1016/j.inoche.2011.08.002.
  • Lam, J.; Sampaolesi, S.; LaFortune, J. H. W.; Coe, J. W.; Stephan, D. W. Design Considerations for Chiral frustrated Lewis Pairs: B/N FLPs Derived from 3,5-bicyclic Aryl Piperidines. Dalton Trans. 2019, 48(1), 133–141. DOI: 10.1039/c8dt04070b.
  • Nicasio, J. A.; Steinberg, S.; Inés, B.; Alcarazo, M. Tuning the Lewis Acidity of Boranes in Frustrated Lewis Pair Chemistry: Implications for the Hydrogenation of Electron-Poor Alkenes. Chem. Eur. J. 2013, 19(33), 11016–11020. DOI: 10.1002/chem.201301158.
  • Santi, M.; Ould, D. M. C.; Wenz, J.; Soltani, Y.; Melen, R. L.; Wirth, T. Metal-Free Tandem Rearrangement/Lactonization: Access to 3,3-Disubstituted Benzofuran-2-(3H)-ones. Angew. Chem. Int. Ed. 2019, 58(23), 7861–7865. DOI: 10.1002/anie.201902985.
  • Soltani, Y.; Adams, S. J.; Börger, J.; Wilkins, L. C.; Newman, P. D.; Pope, S. J. A.; Melen, R. L. Synthesis and photophysical properties of imine borane adducts towards vapochromic materials. Dalton Trans. 2018, 47(36), 12656–12660. DOI: 10.1039/C8DT03019G.
  • Beckett, M. A.; Brassington, D. S.; Coles, S. J.; Hursthouse, M. B. Lewis acidity of tris(pentafluorophenyl)borane: crystal and molecular structure of B(C6F5)3∙OPEt3. Inorg. Chem. Commun. 2000, 3(10), 530–533. DOI: 10.1016/s1387-7003(00)00129-5.
  • Luo, L.; Marks, T. J. Ziegler-Natta catalyst activation. Thermodynamic and kinetic aspects of metallocenium ion-pair formation, dissociation, and structural reorganization. Top. Catal. 1999, 7(1–4), 97–106. DOI: 10.1023/a:1019155515306.
  • Myers, E. L.; Butts, C. P.; Aggarwal, V. K. BF3·OEt2 and TMSOTf: A synergistic combination of Lewis acids. Chem. Commun 2006, 42, 4434–4436. DOI: 10.1039/B611333H.
  • Childs, R. F.; Mulholland, D. L.; Nixon, A. The Lewis acid complexes of α,β-unsaturated carbonyl and nitrile compounds. 1. A nuclear magnetic resonance study. Can. J. Chem.-Rev. Can. Chim. 1982, 60(6), 801–808. DOI: 10.1139/v82-117.
  • Manankandayalage, C. P.; Unruh, D. K.; Krempner, C. Boronic, diboronic and boric acid esters of 1,8-naphthalenediol - synthesis, structure and formation of boronium salts. Dalton Trans. 2020, 49(15), 4834–4842. DOI: 10.1039/d0dt00745e.
  • Adamczyk-Woźniak, A.; Jakubczyk, M.; Jankowski, P.; Sporzyński, A.; Urbański, P. M. Influence of the Diol Structure on the Lewis Acidity of Phenylboronates. J. Phys. Org. Chem. 2013, 26(5), 415–419. DOI: 10.1002/poc.3102.
  • Coffie, S.; Hogg, J. M.; Cailler, L.; Ferrer-Ugalde, A.; Murphy, R. W.; Holbrey, J. D.; Coleman, F.; Swadzba-Kwasny, M. Lewis Superacidic Ionic Liquids with Tricoordinate Borenium Cations. Angew. Chem. Int. Ed. 2015, 54(49), 14970–14973. DOI: 10.1002/anie.201508653.
  • Matuszek, K.; Coffie, S.; Chrobok, A.; Swadzba-Kwasny, M. Borenium Ionic Liquids as Catalysts for Diels-Alder Reaction: Tuneable Lewis Superacids for Catalytic Applications. Catal. Sci. Technol 2017, 7(5), 1045–1049. DOI: 10.1039/c7cy00106a.
  • Tseng, H. C.; Shen, C. T.; Matsumoto, K.; Shih, D. N.; Liu, Y. H.; Peng, S. M.; Yamaguchi, S.; Lin, Y. F.; Chiu, C. W. [η5-Cp*B-Mes]+: A Masked Potent Boron Lewis Acid. Organometallics. 2019, 38(22), 4516–4521. DOI: 10.1021/acs.organomet.9b00671.
  • Childs, R. F.; Mulholland, D. L.; Nixon, A. Lewis acid adducts of α,β-unsaturated carbonyl and nitrile compounds. 2. A calorimetric study. Can. J. Chem.-Rev. Can. Chim. 1982, 60(6), 809–812. DOI: 10.1139/v82-118.
  • Ullrich, M.; Lough, A. J.; Stephan, D. W. Dihydrogen Activation by B(p-C6F4H)3 and Phosphines. Organometallics. 2010, 29(16), 3647–3654. DOI: 10.1021/om100563m.
  • Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40(3), 1305–1323. DOI: 10.1039/C0CS00062K.
  • Blagg, R. J.; Simmons, T. R.; Hatton, G. R.; Courtney, J. M.; Bennett, E. L.; Lawrence, E. J.; Wildgoose, G. G. Novel B(Ar′)2(Ar′′) Hetero-tri(aryl)boranes: a Systematic Study of Lewis Acidity. Dalton Trans. 2016, 45(14), 6032–6043. DOI: 10.1039/C5DT03854E.
  • Zhao, H.; Reibenspies, J. H.; Gabbaï, F. P. Lewis acidic behavior of B(C6Cl5)3. Dalton Trans. 2013, 42(3), 608–610. DOI: 10.1039/C2DT31482G.
  • Gaffen, J. R.; Bentley, J. N.; Torres, L. C.; Chu, C.; Baumgartner, T.; Caputo, C. B. A Simple and Effective Method of Determining Lewis Acidity by Using Fluorescence. Chem. 2019, 5(6), 1567–1583. DOI: 10.1016/j.chempr.2019.03.022.
  • Bentley, J. N.; Elgadi, S. A.; Gaffen, J. R.; Demay-Drouhard, P.; Baumgartner, T.; Caputo, C. B. Fluorescent Lewis Adducts: A Practical Guide to Relative Lewis Acidity. Organometallics. 2020, 39(20), 3645–3655. DOI: 10.1021/acs.organomet.0c00389.
  • Nöth, H.; Wrackmeyer, B, Eds., Nuclear Magnetic Resonance Spectroscopy of Boron Compounds; Springer: Berlin, Heidelberg, 1978.
  • Adonin, N. Y.; Bardin, V. V.; Flörke, U.; Frohn, H.-J. Efficient Synthesis of Salts of the Tetrakis(perfluoroorgano)borate Anion, [B(CFCF2)4]. Organometallics. 2004, 23(2), 172–174. DOI: 10.1021/om030610i.
  • LeBlanc, F. A.; Decken, A.; Cameron, T. S.; Passmore, J.; Rautiainen, J. M.; Whidden, T. K. Synthesis, Characterization, and Properties of Weakly Coordinating Anions Based on tris-Perfluoro-tert-Butoxyborane. Inorg. Chem 2017, 56(2), 974–983. DOI: 10.1021/acs.inorgchem.6b02670.
  • Smith, M. F.; Cassidy, S. J.; Adams, I. A.; Vasiliu, M.; Gerlach, D. L.; Dixon, D. A.; Rupar, P. A. Substituent Effects on the Properties of Borafluorenes. Organometallics. 2016, 35(18), 3182–3191. DOI: 10.1021/acs.organomet.6b00537.
  • Blagg, R. J.; Wildgoose, G. G. H2 activation using the first 1 : 1 : 1 hetero-tri(aryl)borane. R.S.C. Adv 2016, 6(48), 42421–42427. DOI: 10.1039/C6RA07007H.
  • Lawrence, E. J.; Blagg, R. J.; Hughes, D. L.; Ashley, A. E.; Wildgoose, G. G. A Combined “Electrochemical–Frustrated Lewis Pair” Approach to Hydrogen Activation: Surface Catalytic Effects at Platinum Electrodes. Chem. Eur. J. 2015, 21(2), 900–906. DOI: 10.1002/chem.201404242.
  • Zhang, Z.; Edkins, R. M.; Nitsch, J.; Fucke, K.; Steffen, A.; Longobardi, L. E.; Stephan, D. W.; Lambert, C.; Marder, T. B. Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups. Chem. Sci 2015, 6(1), 308–321. DOI: 10.1039/C4SC02410A.
  • Cummings, S. A.; Iimura, M.; Harlan, C. J.; Kwaan, R. J.; Trieu, I. V.; Norton, J. R.; Bridgewater, B. M.; Jäkle, F.; Sundararaman, A.; Tilset, M. An Estimate of the Reduction Potential of B(C6F5)3 from Electrochemical Measurements on Related Mesityl Boranes. Organometallics. 2006, 25(7), 1565–1568. DOI: 10.1021/om050003q.
  • Jupp, A. R.; Johnstone, T. C.; Stephan, D. W. The global electrophilicity index as a metric for Lewis acidity. Dalton Trans. 2018, 47(20), 7029–7035. DOI: 10.1039/C8DT01699B.
  • Parr, R. G.; Szentpály, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc 1999, 121(9), 1922–1924. DOI: 10.1021/ja983494x.
  • Jupp, A. R.; Johnstone, T. C.; Stephan, D. W. Improving the Global Electrophilicity Index (GEI) as a Measure of Lewis Acidity. Inorg. Chem 2018, 57(23), 14764–14771. DOI: 10.1021/acs.inorgchem.8b02517.
  • Oehlke, A.; Auer, A. A.; Schreiter, K.; Friebe, N.; Spange, S. Highly Lewis Acidic Arylboronate Esters Capable of Colorimetric Turn-On Response. Chem. Eur. J. 2015, 21(49), 17890–17896. DOI: 10.1002/chem.201500835.
  • Chardon, A.; Osi, A.; Mahaut, D.; Doan, T.-H.; Tumanov, N.; Wouters, J.; Fusaro, L.; Champagne, B.; Berionni, G. Controlled Generation of 9-Boratriptycene by Lewis Adduct Dissociation: Accessing a Non-Planar Triarylborane. Angew. Chem. Int. Ed. 2020, 59(30), 12402–12406. DOI: 10.1002/anie.202003119.
  • Doan, T.-H.; Chardon, A.; Osi, A.; Mahaut, D.; Tumanov, N.; Wouters, J.; Champagne, B.; Berionni, G. Methylene Bridging Effect on the Structures, Lewis Acidities and Optical Properties of Semi-planar Triarylboranes. Chem. Eur. J. 2021, 27(5), 1736–1743. DOI: 10.1002/chem.202003319.
  • Carden, J. L.; Dasgupta, A.; Melen, R. L. Halogenated triarylboranes: synthesis, properties and applications in catalysis. Chem. Soc. Rev. 2020, 49(6), 1706–1725. DOI: 10.1039/C9CS00769E.
  • Fang, H.; Oestreich, M. Defunctionalisation catalysed by boron Lewis acids. Chem. Sci 2020, 11(47), 12604–12615. DOI: 10.1039/D0SC03712E.
  • Simocko, C.; Wagener, K. B. Effects of Boron-Containing Lewis Acids on Olefin Metathesis. Organometallics. 2013, 32(9), 2513–2516. DOI: 10.1021/om400257b.
  • Nori, V.; Pesciaioli, F.; Sinibaldi, A.; Giorgianni, G.; Carlone, A. Boron-Based Lewis Acid Catalysis: Challenges and Perspectives. Catalysts. 2022, 12(1), 5. DOI: 10.3390/catal12010005.
  • Kaehler, T.; Melen, R. L. Comparative study of fluorinated triarylalanes and their borane counterparts. Cell Reports Phys. Sci. 2021, 2(10), 100595. DOI: 10.1016/j.xcrp.2021.100595.
  • Rendler, S.; Oestreich, M. Conclusive Evidence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Compounds: Implications for the Related Hydrogenation. Angew. Chem. Int. Ed. 2008, 47(32), 5997–6000. DOI: 10.1002/anie.200801675.
  • Keess, S.; Simonneau, A.; Oestreich, M. Direct and Transfer Hydrosilylation Reactions Catalyzed by Fully or Partially Fluorinated Triarylboranes: A Systematic Study. Organometallics. 2015, 34(4), 790–799. DOI: 10.1021/om501284a.
  • Sakata, K.; Fujimoto, H. Quantum Chemical Study of B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Group. J. Org. Chem. 2013, 78(24), 12505–12512. DOI: 10.1021/jo402195x.
  • Dasgupta, A.; Stefkova, K.; Babaahmadi, R.; Gierlichs, L.; Ariafard, A.; Melen, R. L. Triarylborane-Catalyzed Alkenylation Reactions of Aryl Esters with Diazo Compounds. Angew. Chem. Int. Ed. 2020, 59(36), 15492–15496. DOI: 10.1002/anie.202007176.
  • Shmakov, M. M.; Prikhod’ko, S. A.; Peshkov, R. Y.; Bardin, V. V.; Adonin, N. Y. Aryldifluoroboranes: Lewis acidity and catalytic activity in the alkylation of phenols. Mol. Catal. 2022, 521. DOI: 10.1016/j.mcat.2022.112202.
  • Hooz, J.; Linke, S. The reaction of trialkylboranes with diazoacetone. A new ketone synthesis. J. Am. Chem. Soc 1968, 90(21), 5936–5937. DOI: 10.1021/ja01023a070.
  • Hooz, J.; Gunn, D. M. A new diketone synthesis via alkylation of bisdiazo-ketones with trialkylboranes. J. Chem. Soc. D: Chem. Commun. 1969, 4, 139. DOI: 10.1039/C29690000139.
  • Hooz, J.; Gunn, D. M. The reaction of B-vinylic- and B-alkyl-9-borabicyclo[3.3.1]nonane derivatives with ethyl diazoacetate and diazoacetone. Tetrahedron Lett. 1969, 10(40), 3455–3458. DOI: 10.1016/S0040-4039(01)88419-7.
  • Li, H.; Zhang, Y.; Wang, J. Reaction of Diazo Compounds with Organoboron Compounds. Synthesis. 2013, 45(22), 3090–3098. DOI: 10.1055/s-0033-1340041.
  • Sanchez-Carmona, M. A.; Contreras-Cruz, D. A.; Miranda, L. D. Base-free two-step synthesis of 1,3-diketones and β-ketoesters from α-diazocarbonyl compounds, trialkylboranes, and aromatic aldehydes. Org. Biomol. Chem. 2011, 9(19), 6506–6508. DOI: 10.1039/C1OB05150D.
  • Luan, Y.; Yu, J.; Zhang, X.; Schaus, S. E.; Wang, G. Diastereoselective Three-Component Synthesis of β-Amino Carbonyl Compounds Using Diazo Compounds, Boranes, and Acyl Imines under Catalyst-Free Conditions. J. Org. Chem. 2014, 79(10), 4694–4698. DOI: 10.1021/jo5003505.
  • Stephan, D. W.; Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed. 2010, 49(1), 46–76. DOI: 10.1002/anie.200903708.
  • Erker, G. Frustrated Lewis pairs: Some recent developments. Pure Appl. Chem. 2012, 84(11), 2203–2217. DOI: 10.1351/PAC-CON-12-04-07.
  • Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. R. Metal-Free Hydrogen Activation. Science. 2006, 314(5802), 1124–1126. DOI: 10.1126/science.1134230.
  • Yang, X.; Stern, C. L.; Marks, T. J. Cation-like homogeneous olefin polymerization catalysts based upon zirconocene alkyls and tris(pentafluorophenyl)borane. J. Am. Chem. Soc 1991, 113(9), 3623–3625. DOI: 10.1021/ja00009a076.
  • Ewen, J. A.; Elder, M. J. Metallocene catalysts with Lewis acids and aluminum alkyls. U.S. Patent 5,561,092, accessed Oct 01, 1996.
  • Chen, E. Y.-X.; Marks, T. J. Cocatalysts for Metal-Catalyzed Olefin Polymerization:  Activators, Activation Processes, and Structure - Activity Relationships. Chem. Rev. 2000, 100(4), 1391–1434. DOI: 10.1021/cr980462j.
  • Fontaine, F.-G.; Stephan, D. W. On the concept of frustrated Lewis pairs. Philosoph. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 2017, 375(2101), 20170004. DOI: 10.1098/rsta.2017.0004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.