Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 38, 2016 - Issue 11
547
Views
43
CrossRef citations to date
0
Altmetric
Original Research Paper

Quercetin attenuates neuronal autophagy and apoptosis in rat traumatic brain injury model via activation of PI3K/Akt signaling pathway

, , , , , , & show all

References

  • Nortje J, Menon DK. Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol. 2004;17(6):711–18.10.1097/00019052-200412000-00011
  • Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai J Med. 2009;76(2):97–104.10.1002/msj.v76:2
  • Singh P. Missile injuries of the brain: results of less aggressive surgery. Neurol India. 2003;51(2):215–19.
  • Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004;24(10):851–74.10.1016/j.nutres.2004.07.005
  • Oliveira MRD, Nabavi SM, Braidy N, et al. Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv. 2016, 34(5): 532–549. doi: 10.1016/j.biotechadv.2015.12.014 .
  • Nabavi SF, Russo GL, Daglia M, et al. Role of quercetin as an alternative for obesity treatment: you are what you eat!. Food Chem. 2015;179(305):305–310.10.1016/j.foodchem.2015.02.006
  • Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr: Int Rev J. 2012;3(1):39–46.10.3945/an.111.001271
  • Nabavi SM, Nabavi SF, Eslami S, et al. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem. 2012;132(2):931–935.10.1016/j.foodchem.2011.11.070
  • Nabavi SF, Nabavi SM, Mirzaei M, et al. Protective effect of quercetin against sodium fluoride induced oxidative stress in rat’s heart. Food Funct. 2012;3(4):437–41.10.1039/c2fo10264a
  • Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143(2):383–96.10.1016/j.jep.2012.07.005
  • Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf. 2009;8(4):397–409.10.1517/14740330903026944
  • Yao RQ, Qi DS, Yu HL, Liu J, Yang LH, Wu XX. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF–TrkB–PI3K/Akt signaling pathway. Neurochem Res. 2012;37(12):2777–86.10.1007/s11064-012-0871-5
  • Wang XQ, Yao RQ, Liu X, Huang JJ, Qi DS, Yang LH. Quercetin protects oligodendrocyte precursor cells from oxygen/glucose deprivation injury in vitro via the activation of the PI3K/Akt signaling pathway. Brain Res Bull. 2011;86:277–84.10.1016/j.brainresbull.2011.07.014
  • Cui CM, Cui Y, Gao JL, Sun L, Wang Y, Wang K, et al. Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurol Sci. 2014;35:695–700.10.1007/s10072-013-1585-4
  • Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, et al. Poloxamer-188 attenuates TBI-induced blood–brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res. 2012;37:2856–67.10.1007/s11064-012-0880-4
  • Pozuelo-Rubio M. 14-3-3ζ binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy. 2011;7:240–42.10.4161/auto.7.2.14286
  • Cordaro M, Impellizzeri D, Paterniti I, Bruschetta G, Siracusa R, De Stefano D, et al. Neuroprotective effects of co-ultraPEALut on secondary inflammatory process and autophagy involved in traumatic brain injury. J Neurotrauma. 2016;33(1):132–46.10.1089/neu.2014.3460
  • Bao HJ, Zhang L, Han WC, Dai DK. Apelin-13 attenuates traumatic brain injury-induced damage by suppressing autophagy. Neurochem Res. 2015;40(1):89–97.10.1007/s11064-014-1469-x
  • Liu CL, Chen S, Dietrich D, et al. Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab. 2008;28(4):674–83.10.1038/sj.jcbfm.9600587
  • Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005;9(1):66–75.
  • Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase – moving towards therapy. Biochim Biophys Acta. 2008;1784:159–85.10.1016/j.bbapap.2007.10.003
  • Hetman M, Kanning K, Cavanaugh JE, Xia Z. Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem. 1999;274:22569–80.10.1074/jbc.274.32.22569
  • Nakamura M, Raghupathi R, Merry DE, et al. Overexpression of Bcl-2 is neuroprotective after experimental brain injury in transgenic mice. J Comp Neurol. 1999;412:681–92.10.1002/(ISSN)1096-9861
  • Marmarou A, Foda MA, Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. J Neurosurg. 1994;80:291–300.10.3171/jns.1994.80.2.0291
  • Dong YS, Wang JL, Feng DY, Qin HZ, Wen H, Yin ZM, et al. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. J Med Sci. 2014;11(3):282–90.
  • Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, et al. Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem. 2007;294(1–2):137–44.10.1007/s11010-006-9253-0
  • Nan L I, Wang P, Xue-Ling M A, et al. Effect of bone marrow stromal cell transplantation on neurologic function and expression of VEGF in rats with focal cerebral ischemia. Mol Med Rep. 2014;10(5):2299–2305.
  • Cao X, Huang S, Cao J, et al. The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats. Dev Psychobiol. 2014;56(5):1102–9.10.1002/dev.v56.5
  • Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, et al. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res. 2003;965(1–2):130–6.10.1016/S0006-8993(02)04150-1
  • Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, et al. Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res. 2009;1250:242–53.10.1016/j.brainres.2008.10.068
  • Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience. 2011;184:54–63.10.1016/j.neuroscience.2011.03.021
  • Sun LQ, Gao JL, Cui CM, Cui Y, Jing XB, Zhao MM, et al. Astrocytic p-connexin 43 regulates neuronal autophagy in the hippocampus following traumatic brain injury in rats. Mol Med Rep. 2014;9:77–82.
  • Lipinski MM, Wu J, Faden A, Sarkar C. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Sign. 2015;23(6):565–77.10.1089/ars.2015.6306
  • Wang JW, Wang HD, Cong ZX, Zhou XM, Xu JG, Jia Y, et al. Puerarin ameliorates oxidative stress in a rodent model of traumatic brain injury. J Surg Res. 2014;186(1):328–37.10.1016/j.jss.2013.08.027
  • Endo H, Nito C, Kamada H, Yu F, Chan PH. Akt/GSK3  survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke. 2006;37(8):2140–6.10.1161/01.STR.0000229888.55078.72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.