Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 43, 2021 - Issue 8
763
Views
9
CrossRef citations to date
0
Altmetric
Review

Overview of stem cells therapy in amyotrophic lateral sclerosis

, MD, PhDORCID Icon, , MD & , MDORCID Icon
Pages 616-632 | Received 11 Sep 2020, Accepted 16 Feb 2021, Published online: 25 Feb 2021

References

  • Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001 May 31;344(22):1688–1700.
  • Brown RH Jr., Amyotrophic Lateral A-CA. Sclerosis. N Engl J Med. 2017 Oct 19;377(16):1602.
  • Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol. 2016;138:225–238.
  • Alsultan AA, Waller R, Heath PR, et al. The genetics of amyotrophic lateral sclerosis: current insights. Neurol Neuromuscul Dis. 2016;6:49–64. Degener
  • Zou ZY, Zhou ZR, Che CH, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry. 2017 Jul;88(7):540–549.
  • Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012 Mar;14(3):CD001447.
  • Bucchia M, Ramirez A, Parente V, et al. Therapeutic development in amyotrophic lateral sclerosis. Clin Ther. 2015 Mar 1;37(3):668–680.
  • Crisafulli SG, Brajkovic S, Cipolat Mis MS, et al. Therapeutic strategies under development targeting inflammatory mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol. 2018 Apr;55(4):2789–2813.
  • Cozzolino M, Pesaresi MG, Gerbino V, et al. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal. 2012 Nov 1;17(9):1277–1330.
  • Peters OM, Ghasemi M, Brown RH Jr. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015 May;125(5):1767–1779.
  • Dafinca R, Barbagallo P, Farrimond L, et al. Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Reports. 2020 May 12;14(5):892–908.
  • Kiernan MC, Vucic S, Talbot K, et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol. 2020;18:1–15.
  • Abo-Rady M, Kalmbach N, Pal A, et al. Knocking out C9ORF72 exacerbates axonal trafficking defects associated with hexanucleotide repeat expansion and reduces levels of heat shock proteins. Stem Cell Reports. 2020 Mar 10;14(3):390–405.
  • Lee DY, Jeon GS, Sung JJALS. Linked mutant SOD1 associates with TIA-1 and alters stress granule dynamics. Neurochem Res. 2020 Dec;45(12):2884–2893.
  • D’Amico E, Factor-Litvak P, Santella RM, et al. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med. 2013;65:509–527.
  • Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6:171.
  • Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nature Reviews Disease Primers. 2017 Oct;20(3):17085.
  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci. 2002 Jan 15;193(2):73–78.
  • Van Den Bosch L, Van Damme P, Bogaert E, et al. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006 Nov-Dec;1762(11–12):1068–1082.
  • Gregory JM, Livesey MR, McDade K, et al. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain. J Pathol. 2020 Jan;250(1):67–78.
  • Foran E, Trotti D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal. 2009 Jul;11(7):1587–1602.
  • Bristol LA, Rothstein JD. Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol. 1996 May;39(5):676–679.
  • Mendonça DM, Chimelli L, Martinez AM. Quantitative evidence for neurofilament heavy subunit aggregation in motor neurons of spinal cords of patients with amyotrophic lateral sclerosis. Braz J Med Biol Res = Rev Bras Pesqui Med Biol. 2005 Jun;38(6):925–933.
  • Hirano A, Donnenfeld H, Sasaki S, et al. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1984 Sep;43(5):461–470.
  • Sasaki S, Iwata M. Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett. 1996 Feb 2;204(1–2):53–56.
  • De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis. 2017 Sep;105:283–299.
  • Rizzo F, Riboldi G, Salani S, et al. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci. 2014 Mar;71(6):999–1015.
  • Trias E, Kovacs M, King PH, et al. Schwann cells orchestrate peripheral nerve inflammation through the expression of CSF1, IL-34, and SCF in amyotrophic lateral sclerosis. Glia. 2020 Jun;68(6):1165–1181.
  • Ghasemi M, Keyhanian K, Douthwright C. Glial cell dysfunction in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia. Cells. 2021;10:2.
  • Smethurst P, Risse E, Tyzack GE, et al. Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral sclerosis. Brain. 2020 Feb 1;143(2):430–440.
  • Dadon-Nachum M, Melamed E, The OD. “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci. 2011 Mar;43(3):470–477.
  • Delayed Onset SB. Muscle Soreness (DOMS): the repeated bout effect and chemotherapy-induced axonopathy may help explain the dying-back mechanism in amyotrophic lateral sclerosis and other neurodegenerative diseases. Brain Sci. 2021;11:1.
  • Altman T, Perlson E. Neuromuscular junction mitochondrial enrichment: a double-edged sword underlying the selective motor neuron vulnerability in amyotrophic lateral sclerosis [Perspective]. Neural Regen Res. 2021 January 1;16(1):115–116. 2021
  • Palma E, Reyes-Ruiz JM, Lopergolo D, et al. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3060–3065.
  • Palma E, Inghilleri M, Conti L, et al. Physiological characterization of human muscle acetylcholine receptors from ALS patients. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20184–20188.
  • Ghasemi M, Brown RH Jr. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. 2018 May 1;8:5.
  • Shibata N, Asayama K, Hirano A, et al. Immunohistochemical study on superoxide dismutases in spinal cords from autopsied patients with amyotrophic lateral sclerosis. Dev Neurosci. 1996;18(5–6):492–498.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011 Oct 20;72(2):245–256.
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011 Oct 20;72(2):257–268.
  • Gijselinck I, Van Langenhove T, van der Zee J, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012 Jan;11(1):54–65.
  • Brettschneider J, Del Tredici K, Toledo JB, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013 Jul;74(1):20–38.
  • Ederle H, Dormann DTDP. 43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett. 2017 Jun;591(11):1489–1507.
  • Clement AM, Nguyen MD, Roberts EA, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 2003 Oct 3;302(5642):113–117.
  • Lepore AC, O’Donnell J, Kim AS, et al. Human glial-restricted progenitor transplantation into cervical spinal cord of the SOD1 mouse model of ALS. PloS One. 2011;6(10):e25968.
  • Suzuki M, McHugh J, Tork C, et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PloS One. 2007 Aug 1;2(8):e689.
  • Knippenberg S, Rath KJ, Boselt S, et al. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med. 2017 Mar;11(3):751–764.
  • Harrell CR, Fellabaum C, Jovicic N, et al. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019 May 16;8:5.
  • Yamashita T, Kushida Y, Wakao S, et al. Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis. Sci Rep. 2020;10(1):17102.
  • Yamada Y, Wakao S, Kushida Y, et al. S1P-S1PR2 axis mediates homing of muse cells into damaged heart for long-lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res. 2018 Apr 13;122(8):1069–1083.
  • Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015 Apr 28;35:2.
  • Pal B, Das B. In vitro culture of naive human bone marrow mesenchymal stem cells: a stemness based approach. Front Cell Dev Biol. 2017;5:69.
  • Mahmoudifar N, Doran PM. Mesenchymal Stem Cells Derived from Human Adipose Tissue. Methods Mol Biol. 2015;1340:53–64.
  • Arutyunyan I, Elchaninov A, Makarov A, et al. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286.
  • Liu J, Yu F, Sun Y, et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015 Mar;33(3):627–638.
  • Bajek A, Gurtowska N, Olkowska J, et al. Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp (Warsz). 2016 Dec;64(6):443–454.
  • Xiao L, Tsutsui T. Human dental mesenchymal stem cells and neural regeneration. Hum Cell. 2013 Sep;26(3):91–96.
  • Abdullah RH, Yaseen NY, Salih SM, et al. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. J Chem Neuroanat. 2016;77:129–142.
  • Yousefi B, Sanooghi D, Faghihi F, et al. Evaluation of motor neuron differentiation potential of human umbilical cord blood- derived mesenchymal stem cells, in vitro. J Chem Neuroanat. 2017;81:18–26.
  • Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017 Aug 25;18:9.
  • Naderi-Meshkin H, Bahrami AR, Bidkhori HR, et al. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy. Cell Biol Int. 2015 Jan;39(1):23–34.
  • Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013:130763.
  • Kolagar TA, Farzaneh M, Nikkar N, et al. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Curr Stem Cell Res Ther. 2020;15(2):102–110.
  • Terashima T, Kobashi S, Watanabe Y, et al. Enhancing the therapeutic efficacy of bone marrow-derived mononuclear cells with growth factor-expressing mesenchymal stem cells for ALS in mice. iScience. 2020 Nov 20;23(11):101764.
  • de Munter J, Shafarevich I, Liundup A, et al. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther. 2020 May;26(5):504–517.
  • Terashima T, Kojima H, Urabe H, et al. Stem cell factor-activated bone marrow ameliorates amyotrophic lateral sclerosis by promoting protective microglial migration. J Neurosci Res. 2014 Jul;92(7):856–869.
  • Watanabe Y, Kazuki Y, Kazuki K, et al. Use of a human artificial chromosome for delivering trophic factors in a rodent model of amyotrophic lateral sclerosis. Mol Ther Nucleic Acids. 2015 Oct 6;4(10):e253.
  • Sinenko SA, Ponomartsev SV, Tomilin AN. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Exp Cell Res. 2020;389(1): 111882. 2020/04/01/
  • Nakanishi M, Watanabe Y, Honda N, et al. Dynamics of host and graft after cell sheet transplantation: basic study for the application of amyotrophic lateral sclerosis. Brain Res. 2019 Dec 1;1724:146444.
  • Chen R, Ende N. The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med. 2000;31(1–2):21–30.
  • Ende N, Weinstein F, Chen R, et al. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci. 2000 May 26;67(1):53–59.
  • Haidet-Phillips AM, Maragakis NJ. Neural and glial progenitor transplantation as a neuroprotective strategy for Amyotrophic Lateral Sclerosis (ALS). Brain Res. 2015 Dec 2;1628(Pt B):343–350.
  • Teng YD, Benn SC, Kalkanis SN, et al. Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med. 2012 Dec 19;4(165):165ra164.
  • Lin H, Hu H, Duan W, et al. Intramuscular Delivery of scAAV9-hIGF1 Prolongs Survival in the hSOD1(G93A) ALS mouse model via upregulation of D-Amino Acid Oxidase. Mol Neurobiol. 2018 Jan;55(1):682–695.
  • Thomsen GM, Alkaslasi M, Vit JP, et al. Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1(G93A) ALS rat but has adverse side effects. Gene Ther. 2017 Apr;24(4):245–252.
  • Wang Y, Duan W, Wang W, et al. scAAV9-VEGF prolongs the survival of transgenic ALS mice by promoting activation of M2 microglia and the PI3K/Akt pathway. Brain Res. 2016 Oct 1;1648(Pt A):1–10.
  • Wen D, Cui C, Duan W, et al. The role of insulin-like growth factor 1 in ALS cell and mouse models: A mitochondrial protector. Brain Res Bull. 2019;144:1–13.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861–872.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663–676.
  • Burkhardt MF, Martinez FJ, Wright S, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2013;56:355–364.
  • Lee JH, Liu JW, Lin SZ, et al. Advances in patient-specific induced pluripotent stem cells shed light on drug discovery for amyotrophic lateral sclerosis. Cell Transplant. 2018 Sep;27(9):1301–1312.
  • Hawrot J, Imhof S, Wainger BJ. Modeling cell-autonomous motor neuron phenotypes in ALS using iPSCs. Neurobiol Dis. 2020 Feb;134:104680.
  • Seminary ER, Santarriaga S, Wheeler L, et al. Motor neuron generation from iPSCs from Identical twins discordant for amyotrophic lateral sclerosis. Cells. 2020 Feb 28;9:3.
  • Popescu IR, Nicaise C, Liu S, et al. Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis. Stem Cells Transl Med. 2013 Mar;2(3):167–174.
  • Kondo T, Funayama M, Tsukita K, et al. Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Reports. 2014 Aug 12;3(2):242–249.
  • Nizzardo M, Simone C, Rizzo F, et al. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet. 2014 Jan 15;23(2):342–354.
  • Schweitzer JS, Song B, Herrington TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med. 2020 May 14;382(20):1926–1932.
  • Janson CG, Ramesh TM, During MJ, et al. Human intrathecal transplantation of peripheral blood stem cells in amyotrophic lateral sclerosis. J Hematother Stem Cell Res. 2001 Dec;10(6):913–915.
  • Mazzini L, Fagioli F, Boccaletti R, et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003 Sep;4(3):158–161.
  • Blanquer M, Perez Espejo MA, Iniesta F, et al. [Bone marrow stem cell transplantation in amyotrophic lateral sclerosis: technical aspects and preliminary results from a clinical trial]. Methods Find Exp Clin Pharmacol. 2010 Dec;32(Suppl A):31–37.
  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology. 2010 Oct;67(10):1187–1194.
  • Mazzini L, Ferrero I, Luparello V, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp Neurol. 2010 May;223(1):229–237.
  • Blanquer M, Moraleda JM, Iniesta F, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. 2012 Jun;30(6):1277–1285.
  • Mazzini L, Mareschi K, Ferrero I, et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy. 2012 Jan;14(1):56–60.
  • Prabhakar S, Marwaha N, Lal V, et al. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study. Neurol India. 2012 Sep-Oct;60(5):465–469.
  • Oh KW, Moon C, Kim HY, et al. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med. 2015 Jun;4(6):590–597.
  • Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016 Mar;73(3):337–344.
  • Sykova E, Rychmach P, Drahoradova I, et al. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 2017 Apr 13;26(4):647–658.
  • Oh KW, Noh MY, Kwon MS, et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol. 2018 Sep;84(3):361–373.
  • Berry JD, Cudkowicz ME, Windebank AJ, et al. NurOwn, phase 2, randomized, clinical trial in patients with ALS: safety, clinical, and biomarker results. Neurology. 2019 Dec 10;93(24):e2294–e2305.
  • Nabavi SM, Arab L, Jarooghi N, et al. Safety, feasibility of intravenous and intrathecal injection of autologous bone marrow derived mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: an open label phase I clinical trial. Cell J. 2019 Jan;20(4):592–598.
  • Abdul Wahid SF, Law ZK, Ismail NA, et al. Cell-based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2019 Dec 19;12(12):Cd011742.
  • Aricha R, Cudkowicz M, Berry J, et al. In vivo modulation of neurotrophic and inflammatory factors in the CSF of ALS patients treated with NurOwn (MSC NTF cells). Cytotherapy. 2017;19(Suppl 5):S199.
  • Aricha R, Kaspi H, Cudkowicz M, et al. Modulation of CSF mirnas in ALS phase 2 study participants treated with MSC-NTF cells (NurOwn). Neurology. 2018;90(15 Suppl):S25.005.
  • Gothelf Y, Cudkowicz M, Berry J, et al. Safety and efficacy of transplantation of NurOwn (autologous mesenchymal stromal cells secreting neurotrophic factors) in patients with ALS: a phase 2 randomized double blind placebo controlled trial. Crytotherapy. 2017;19(Suppl 5):S23.
  • Kern R, Cudkowicz M, Berry J, et al. NurOwn® Phase 2 ALS Trial: ALSFRS-R Improvement is Reflected in Subscale Domains (S38.002). Neurology. 2018;90(15 Supplement):S38.002.
  • Kim SH. Phase I/II trials of autologous BM derived stem cell therapy in ALS. Clinical Neurology. 2016;56:S228.
  • Kim SH, Oh K-W, Kwon M-S, et al. A phase 2 study for safety and eMicacy evaluation of treatment of amyotrophic lateral sclerosis using autologous bonemarrow-derived stromal cell. Amyotrophic Lateral Scler Fronttemporal Degener. 2015;16(Suppl 1):53.
  • Ceravolo MG. Is cell-based therapy more efficacious for people with amyotrophic lateral sclerosis/motor neuron disease than placebo or no treatment? - A Cochrane review summary with commentary. NeuroRehabilitation. 2020;46(4):613–615.
  • Staff NP, Madigan NN, Morris J, et al. Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS. Neurology. 2016 Nov 22;87(21):2230–2234.
  • Appel SH, Engelhardt JI, Henkel JS, et al. Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology. 2008 Oct 21;71(17):1326–1334.
  • Deda H, Inci MC, Kurekci AE, et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy. 2009;11(1):18–25.
  • Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, et al. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 2009;11(1):26–34.
  • Martinez HR, Molina-Lopez JF, Gonzalez-Garza MT, et al. Stem cell transplantation in amyotrophic lateral sclerosis patients: methodological approach, safety, and feasibility. Cell Transplant. 2012;21(9):1899–1907.
  • Glass JD, Boulis NM, Johe K, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells. 2012 Jun;30(6):1144–1151.
  • Feldman EL, Boulis NM, Hur J, et al. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol. 2014 Mar;75(3):363–373.
  • Glass JD, Hertzberg VS, Boulis NM, et al. Transplantation of spinal cord-derived neural stem cells for ALS: analysis of phase 1 and 2 trials. Neurology. 2016 Jul 26;87(4):392–400.
  • Mazzini L, Gelati M, Profico DC, et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med. 2015 Jan 27;13:17.
  • Mazzini L, Gelati M, Profico DC, et al. Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: a long-term outcome. Stem Cells Transl Med. 2019 Sep;8(9):887–897.
  • Huang H, Chen L, Xi H, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant. 2008 Nov-Dec;22(6):710–718.
  • Piepers S. van den Berg LH. No benefits from experimental treatment with olfactory ensheathing cells in patients with ALS. Amyotroph Lateral Scler. 2010 May 3;11(3):328–330.
  • Chew S, Khandji AG, Montes J, et al. Olfactory ensheathing glia injections in Beijing: misleading patients with ALS. Amyotroph Lateral Scler. 2007 Oct;8(5):314–316.
  • Sheridan WP, Begley CG, Juttner CA, et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet. 1992 Mar 14;339(8794):640–644.
  • Salamone P, Fuda G, Casale F, et al. G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open. 2020;10(3):e034049–e034049.
  • Lévesque JP, Winkler IG, Larsen SR, et al. Mobilization of bone marrow-derived progenitors. Handb Exp Pharmacol. 2007;(180):3–36
  • Arora S, Majhail NS, Liu H. Hematopoietic progenitor cell mobilization for autologous stem cell transplantation in multiple myeloma in contemporary era. Clin Lymphoma Myeloma Leuk. 2019 Apr;19(4):200–205.
  • Wallner S, Peters S, Pitzer C, et al. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front Cell Dev Biol. 2015;3:48.
  • Cashman N, Tan LY, Krieger C, et al. Pilot study of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle Nerve. 2008 May;37(5):620–625.
  • Zhang Y, Wang L, Fu Y, et al. Preliminary investigation of effect of granulocyte colony stimulating factor on amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009 Oct-Dec;10(5–6):430–431.
  • Nefussy B, Artamonov I, Deutsch V, et al. Recombinant human granulocyte-colony stimulating factor administration for treating amyotrophic lateral sclerosis: A pilot study. Amyotroph Lateral Scler. 2010;11(1–2):187–193.
  • Tarella C, Rutella S, Gualandi F, et al. Consistent bone marrow-derived cell mobilization following repeated short courses of granulocyte-colony-stimulating factor in patients with amyotrophic lateral sclerosis: results from a multicenter prospective trial. Cytotherapy. 2010;12(1):50–59.
  • Chio A, Mora G, La Bella V, et al. Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis: clinical and biological results from a prospective multicenter study. Muscle Nerve. 2011 Feb;43(2):189–195.
  • Feng Z, Gao F. Stem cell challenges in the treatment of neurodegenerative disease. CNS Neurosci Ther. 2012 Feb;18(2):142–148.
  • Daley GQ, Hyun I, Apperley JF, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Reports. 2016 Jun 14;6(6):787–797.
  • Cossu G, Birchall M, Brown T, et al. Lancet Commission: stem cells and regenerative medicine. Lancet. 2018;391(10123):883–910. 2018/03/03/
  • Goutman SA, Savelieff MG, Sakowski SA, et al. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs. 2019;28(6):525–543.
  • Baumert B, Sobuś A, Gołąb-Janowska M, et al. Repeated application of autologous bone marrow-derived lineage-negative stem/progenitor cells—focus on immunological pathways in patients with ALS. Cells. 2020;9(8):1822.
  • Baumert B, Sobuś A, Gołąb-Janowska M, et al. Local and systemic humoral response to autologous lineage-negative cells intrathecal administration in ALS patients. Int J Mol Sci. 2020;21(3):1070.
  • Barczewska M, Maksymowicz S, Zdolińska-Malinowska I, et al. Umbilical cord mesenchymal stem cells in amyotrophic lateral sclerosis: an original study. Stem Cell Rev Rep. 2020;16(5):922–932.
  • Siwek T, Jezierska-Woźniak K, Maksymowicz S, et al. Repeat administration of bone marrow-derived mesenchymal stem cells for treatment of amyotrophic lateral sclerosis. Med Sci Monit. 2020;26:e927484–1.
  • Geijo-Barrientos E, Pastore-Olmedo C, De Mingo P, et al. Intramuscular injection of bone marrow stem cells in amyotrophic lateral sclerosis patients: a randomized clinical trial. Front Neurosci. 2020;14:195.
  • Nafissi S, Kazemi H, Tiraihi T, et al. Intraspinal delivery of bone marrow stromal cell-derived neural stem cells in patients with amyotrophic lateral sclerosis: A safety and feasibility study. J Neurol Sci. 2016 Mar;15(362):174–181.
  • Salamone P, Fuda G, Casale F, et al. G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open. 2020;10(3):e034049.
  • Pocock K, Suresh N, Suradi Y, et al. An open-label, prospective study evaluating the clinical and immunological effects of higher dose granulocyte colony–stimulating factor in ALS. J Clin Neuromuscul Dis. 2020;21(3):127–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.