1,590
Views
0
CrossRef citations to date
0
Altmetric
Theory and Methods

Double Negative Control Inference in Test-Negative Design Studies of Vaccine Effectiveness

ORCID Icon, ORCID Icon, &
Received 28 Mar 2022, Accepted 31 Mar 2023, Published online: 10 Jul 2023

References

  • Ai, C., and Chen, X. (2003), “Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions,” Econometrica, 71, 1795–1843. DOI: 10.1111/1468-0262.00470.
  • Anders, K. L., Indriani, C., Ahmad, R. A., Tantowijoyo, W., Arguni, E., Andari, B., Jewell, N. P., Rances, E., O’Neill, S. L., Simmons, C. P., et al. (2018), “The awed Trial (Applying Wolbachia to Eliminate Dengue) to Assess the Efficacy of Wolbachia-Infected Mosquito Deployments to Reduce Dengue Incidence in Yogyakarta, Indonesia: Study Protocol for a Cluster Randomised Controlled Trial,” Trials, 19, 1–16. DOI: 10.1186/s13063-018-2670-z.
  • Bareinboim, E., and Pearl, J. (2012), “Controlling Selection Bias in Causal Inference,” Artificial Intelligence and Statistics, 22, 100–108.
  • Bareinboim, E., Tian, J., and Pearl, J. (2014), “Recovering from Selection Bias in Causal and Statistical Inference,” in Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 28). DOI: 10.1609/aaai.v28i1.9074.
  • Black, C. L., Yue, X., Ball, S. W., Fink, R. V., de Perio, M. A., Laney, A. S., Williams, W. W., Graitcer, S. B., Fiebelkorn, A. P., Lu, P.-J., et al. (2018), “Influenza Vaccination Coverage Among Health Care Personnel—United States, 2017–18 Influenza Season,” Morbidity and Mortality Weekly Report, 67, 1050–1054. DOI: 10.15585/mmwr.mm6738a2.
  • Bond, H., Sullivan, S., and Cowling, B. (2016), “Regression Approaches in the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness,” Epidemiology & Infection, 144, 1601–1611. DOI: 10.1017/S095026881500309X.
  • Boom, J. A., Tate, J. E., Sahni, L. C., Rench, M. A., Hull, J. J., Gentsch, J. R., Patel, M. M., Baker, C. J., and Parashar, U. D. (2010), “Effectiveness of Pentavalent Rotavirus Vaccine in a Large Urban Population in the United States,” Pediatrics, 125, e199–e207. DOI: 10.1542/peds.2009-1021.
  • Broome, C. V., Facklam, R. R., and Fraser, D. W. (1980), “Pneumococcal Disease After Pneumococcal Vaccination: An Alternative Method to Estimate the Efficacy of Pneumococcal Vaccine,” New England Journal of Medicine, 303, 549–552. DOI: 10.1056/NEJM198009043031003.
  • Bruxvoort, K. J., Sy, L. S., Qian, L., Ackerson, B. K., Luo, Y., Lee, G. S., Tian, Y., Florea, A., Aragones, M., Tubert, J. E., et al. (2021), “Effectiveness of mRNA-1273 against Delta, mu, and Other Emerging Variants of SARS-CoV-2: Test Negative Case-Control Study,” British Medical Journal, 375, e068848. DOI: 10.1136/bmj-2021-068848.
  • Chen, X. (2007), “Large Sample Sieve Estimation of Semi-Nonparametric Models,” Handbook of Econometrics, 6, 5549–5632.
  • Chua, H., Feng, S., Lewnard, J. A., Sullivan, S. G., Blyth, C. C., Lipsitch, M., and Cowling, B. J. (2020), “The Use of Test-Negative Controls to Monitor Vaccine Effectiveness: A Systematic Review of Methodology,” Epidemiology, 31, 43–64. DOI: 10.1097/EDE.0000000000001116.
  • Cole, S. R., and Frangakis, C. E. (2009), “The Consistency Statement in Causal Inference: A Definition or an Assumption?” Epidemiology, 20, 3–5. DOI: 10.1097/EDE.0b013e31818ef366.
  • Cui, Y., Pu, H., Shi, X., Miao, W., and Tchetgen Tchetgen, E. (in press), “Semiparametric Proximal Causal Inference,” Journal of the American Statistical Association, DOI: 10.1080/01621459.2023.2191817.
  • Dagan, N., Barda, N., Kepten, E., Miron, O., Perchik, S., Katz, M. A., Hernán, M. A., Lipsitch, M., Reis, B., and Balicer, R. D. (2021), “BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting,” New England Journal of Medicine, 384, 1412–1423. DOI: 10.1056/NEJMoa2101765.
  • Dean, N. E., Hogan, J. W., and Schnitzer, M. E. (2021), “Covid-19 Vaccine Effectiveness and the Test-Negative Design,” New England Journal of Medicine, 385, 1431–1433. DOI: 10.1056/NEJMe2113151.
  • Deaner, B. (2021), “Proxy Controls and Panel Data,” arXiv:1810.00283v7 [econ.EM].
  • Didelez, V., Kreiner, S., and Keiding, N. (2010), “Graphical Models for Inference Under Outcome-Dependent Sampling,” Statistical Science, 25, 368–387. DOI: 10.1214/10-STS340.
  • Dufault, S. M., and Jewell, N. P. (2020), “Analysis of Counts for Cluster Randomized Trials: Negative Controls and Test-Negative Designs,” Statistics in Medicine, 39, 1429–1439. DOI: 10.1002/sim.8488.
  • Dukes, O., Shpitser, I., and Tchetgen Tchetgen, E. (in press), “Proximal Mediation Analysis,” Biometrika.
  • D’Haultfoeuille, X. (2011), “On the Completeness Condition in Nonparametric Instrumental Problems,” Econometric Theory, 27, 460–471. DOI: 10.1017/S0266466610000368.
  • Egami, N., and Tchetgen Tchetgen, E. (in press), “Identification and Estimation of Causal Peer Effects Using Double Negative Controls for Unmeasured Network Confounding,” Journal of the Royal Statistical Society, Series B.
  • Feng, S., Cowling, B. J., and Sullivan, S. G. (2016), “Influenza Vaccine Effectiveness by Test-Negative Design–Comparison of Inpatient and Outpatient Settings,” Vaccine, 34, 1672–1679. DOI: 10.1016/j.vaccine.2016.02.039.
  • Foppa, I. M., Ferdinands, J. M., Chaves, S. S., Haber, M. J., Reynolds, S. B., Flannery, B., and Fry, A. M. (2016), “The Case Test-Negative Design for Studies of the Effectiveness of Influenza Vaccine in Inpatient Settings,” International Journal of Epidemiology, 45, 2052–2059. DOI: 10.1093/ije/dyw022.
  • Gabriel, E. E., Sachs, M. C., and Sjölander, A. (2022), “Causal Bounds for Outcome-Dependent Sampling in Observational Studies,” Journal of the American Statistical Association, 117, 939–950. DOI: 10.1080/01621459.2020.1832502.
  • Ghassami, A., Shpitser, I., and Tchetgen Tchetgen, E. (2022), “Combining Experimental and Observational Data for Identification of Long-Term Causal Effects,” arXiv:2201.10743v3 [stat.ME] .
  • Ghassami, A., Shpitser, I., and Tchetgen Tchetgen, E. (2023), “Causal Inference with Hidden Mediators,” arXiv:2111.02927v2 [stat.ST] .
  • Ghassami, A., Ying, A., Shpitser, I., and Tchetgen Tchetgen, E. (2022), “Minimax Kernel Machine Learning for A Class of Doubly Robust Functionals with Application to Proximal Causal Inference,” in International Conference on Artificial Intelligence and Statistics, pp. 7210–7239.
  • Hernán, M. A., Hernández-Díaz, S., and Robins, J. M. (2004), “A Structural Approach to Selection Bias,” Epidemiology, 15, 615–625. DOI: 10.1097/01.ede.0000135174.63482.43.
  • Hernán, M. A., and Robins, J. M. (2020), Causal Inference: What If, Boca Raton: Chapman & Hall/CRC.
  • Hitchings, M. D., Ranzani, O. T., Dorion, M., D’Agostini, T. L., de Paula, R. C., de Paula, O. F. P., de Moura Villela, E. F., Torres, M. S. S., de Oliveira, S. B., Schulz, W., et al. (2021), “Effectiveness of ChAdOx1 Vaccine in Older Adults during SARS-CoV-2 Gamma Variant Circulation in São Paulo,” Nature Communications, 12, 6220. DOI: 10.1038/s41467-021-26459-6.
  • Hudgens, M. G., and Halloran, M. E. (2006), “Causal Vaccine Effects on Binary Postinfection Outcomes,” Journal of the American Statistical Association, 101, 51–64. DOI: 10.1198/016214505000000970.
  • Hudgens, M. G., and Halloran, M. E. (2008), “Toward Causal Inference with Interference,” Journal of the American Statistical Association, 103, 832–842. DOI: 10.1198/016214508000000292.
  • Imbens, G., Kallus, N., and Mao, X. (2021), “Controlling for Unmeasured Confounding in Panel Data Using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models,” arXiv:2108.03849v1 [stat.ME] .
  • Israel, A., Merzon, E., Schäffer, A. A., Shenhar, Y., Green, I., Golan-Cohen, A., Ruppin, E., Magen, E., and Vinker, S. (2021), “Elapsed Time Since BNT162b2 Vaccine and Risk of SARS-CoV-2 Infection: Test Negative Design Study,” BMJ, 375, e067873. DOI: 10.1136/bmj-2021-067873.
  • Jackson, L. A., Jackson, M. L., Nelson, J. C., Neuzil, K. M., and Weiss, N. S. (2006), “Evidence of Bias in Estimates of Influenza Vaccine Effectiveness in Seniors,” International Journal of Epidemiology, 35, 337–344. DOI: 10.1093/ije/dyi274.
  • Jackson, M. L., Chung, J. R., Jackson, L. A., Phillips, C. H., Benoit, J., Monto, A. S., Martin, E. T., Belongia, E. A., McLean, H. Q., Gaglani, M., et al. (2017), “Influenza Vaccine Effectiveness in the United States during the 2015–2016 Season,” New England Journal of Medicine, 377, 534–543. DOI: 10.1056/NEJMoa1700153.
  • Jackson, M. L., and Nelson, J. C. (2013), “The Test-Negative Design for Estimating Influenza Vaccine Effectiveness,” Vaccine, 31, 2165–2168. DOI: 10.1016/j.vaccine.2013.02.053.
  • Jackson, M. L., Phillips, C. H., Benoit, J., Kiniry, E., Madziwa, L., Nelson, J. C., and Jackson, L. A. (2018), “The Impact of Selection Bias on Vaccine Effectiveness Estimates from Test-Negative Studies,” Vaccine, 36, 751–757. [10] DOI: 10.1016/j.vaccine.2017.12.022.
  • Jewell, N. P., Dufault, S., Cutcher, Z., Simmons, C. P., and Anders, K. L. (2019), “Analysis of Cluster-Randomized Test-Negative Designs: Cluster-Level Methods,” Biostatistics, 20, 332–346. DOI: 10.1093/biostatistics/kxy005.
  • Kallus, N., Mao, X., and Uehara, M. (2022), “Causal Inference under Unmeasured Confounding with Negative Controls: A Minimax Learning Approach,” arXiv:2103.14029v4 [stat.ML] .
  • Krammer, F. (2019), “The Human Antibody Response to Influenza a Virus Infection and Vaccination,” Nature Reviews Immunology, 19, 383–397. DOI: 10.1038/s41577-019-0143-6.
  • Leung, J., Harpaz, R., Molinari, N.-A., Jumaan, A., and Zhou, F. (2011), “Herpes Zoster Incidence among Insured Persons in the United States, 1993–2006: Evaluation of Impact of Varicella Vaccination,” Clinical Infectious Diseases, 52, 332–340. DOI: 10.1093/cid/ciq077.
  • Lipsitch, M., Jha, A., and Simonsen, L. (2016), “Observational Studies and the Difficult Quest for Causality: Lessons from Vaccine Effectiveness and Impact Studies,” International Journal of Epidemiology, 45, 2060–2074. DOI: 10.1093/ije/dyw124.
  • Lipsitch, M., Tchetgen Tchetgen, E., and Cohen, T. (2010), “Negative Controls: A Tool for Detecting Confounding and Bias in Observational Studies,” Epidemiology, 21, 383–388. DOI: 10.1097/EDE.0b013e3181d61eeb.
  • Miao, W., Geng, Z., and Tchetgen Tchetgen, E. (2018), “Identifying Causal Effects with Proxy Variables of An Unmeasured Confounder,” Biometrika, 105, 987–993. DOI: 10.1093/biomet/asy038.
  • Miao, W., Shi, X., and Tchetgen Tchetgen, E. (2020), “A Confounding Bridge Approach for Double Negative Control Inference on Causal Effects,” arXiv:1808.04945v3 [stat.ME] .
  • Moline, H. L., Whitaker, M., Deng, L., Rhodes, J. C., Milucky, J., Pham, H., Patel, K., Anglin, O., Reingold, A., Chai, S. J., et al. (2021), “Effectiveness of COVID-19 Vaccines in Preventing Hospitalization Among Adults Aged ≥ 65 Years—COVID-NET, 13 states, February–April 2021,” Morbidity and Mortality Weekly Report, 70, 1088–1093.
  • Newey, W. K., and Powell, J. L. (2003), “Instrumental Variable Estimation of Nonparametric Models,” Econometrica, 71, 1565–1578. DOI: 10.1111/1468-0262.00459.
  • Olson, S. M., Newhams, M. M., Halasa, N. B., Price, A. M., Boom, J. A., Sahni, L. C., Pannaraj, P. S., Irby, K., Walker, T. C., Schwartz, S. P., et al. (2022), “Effectiveness of BNT162b2 Vaccine against Critical Covid-19 in Adolescents,” New England Journal of Medicine, 386, 713–723. DOI: 10.1056/NEJMoa2117995.
  • Patel, M. M., Jackson, M. L., and Ferdinands, J. (2020), “Postlicensure Evaluation of COVID-19 Vaccines,” Journal of the American Medical Association, 324, 1939–1940. DOI: 10.1001/jama.2020.19328.
  • Qi, Z., Miao, R., and Zhang, X. (2022), “Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding,” Journal of the American Statistical Association (just-accepted), 1–33. DOI: 10.1080/01621459.2022.2147841.
  • Schnitzer, M. E. (2022), “Estimands and Estimation of Covid-19 Vaccine Effectiveness Under the Test-Negative Design: Connections to Causal Inference,” Epidemiology, 33, 325–333. DOI: 10.1097/EDE.0000000000001470.
  • Shi, X., Miao, W., Hu, M., and Tchetgen Tchetgen, E. (2023), “Theory for Identification and Inference with Synthetic Controls: A Proximal Causal Inference Framework,” arXiv:2108.13935v4 [stat.ME] .
  • Shi, X., Miao, W., and Tchetgen Tchetgen, E. (2020), “A Selective Review of Negative Control Methods in Epidemiology,” Current Epidemiology Reports, 109–202. DOI: 10.1007/s40471-020-00243-4.
  • Sullivan, S. G., Feng, S., and Cowling, B. J. (2014), “Potential of the Test-Negative Design for Measuring Influenza Vaccine Effectiveness: A Systematic Review,” Expert Review of Vaccines, 13, 1571–1591. DOI: 10.1586/14760584.2014.966695.
  • Sullivan, S. G., Tchetgen Tchetgen, E., and Cowling, B. J. (2016), “Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness,” American Journal of Epidemiology, 184, 345–353. DOI: 10.1093/aje/kww064.
  • Tchetgen Tchetgen, E., and VanderWeele, T. J. (2012), “On Causal Inference in the Presence of Interference,” Statistical Methods in Medical Research, 21, 55–75. DOI: 10.1177/0962280210386779.
  • Tchetgen Tchetgen, E., Ying, A., Cui, Y., Shi, X., and Miao, W. (2020), “An Introduction to Proximal Causal Learning,” arXiv:2009.10982v1 [stat.ME].
  • Thompson, M. G., Stenehjem, E., Grannis, S., Ball, S. W., Naleway, A. L., Ong, T. C., DeSilva, M. B., Natarajan, K., Bozio, C. H., Lewis, N., et al. (2021), “Effectiveness of COVID-19 Vaccines in Ambulatory and Inpatient Care Settings,” New England Journal of Medicine, 385, 1355–1371. DOI: 10.1056/NEJMoa2110362.
  • Van der Vaart, A. (2000), Asymptotic Statistics (Vol. 3), Cambridge: Cambridge University Press.
  • Wang, B., Dufault, S. M., Small, D. S., and Jewell, N. P. (in press), “Randomization Inference for Cluster-Randomized Test-Negative Designs with Application to Dengue Studies: Unbiased Estimation, Partial Compliance, and Stepped-Wedge Design,” Annals of Applied Statistics.
  • Ying, A., Miao, W., Shi, X., and Tchetgen Tchetgen, E. (in press), “Proximal Causal Inference for Complex Longitudinal Studies,” Journal of the Royal Statistical Society, Series B.