447
Views
59
CrossRef citations to date
0
Altmetric
Review Articles

The Protective Role of Phenolic Compounds Against Doxorubicin-induced Cardiotoxicity: A Comprehensive Review

, , , &
Pages 892-917 | Received 09 Jul 2015, Accepted 25 Apr 2016, Published online: 24 Jun 2016

References

  • Bonadonna G, Monfardini S, De Lena M, Fossati-Bellani F, and Beretta G: Phase I and preliminary phase II evaluation of adriamycin (NSC 123127). Cancer Res 30(10), 2572–2582, 1970.
  • Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, et al.: Doxorubicin‐induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34(1), 106–135, 2014.
  • Villani F, Beretta G, and Guindani A: Evaluation of early doxorubicin-induced cardiotoxicity by means of systolic time intervals. Cancer Chemoth Pharm 3(4), 249–251, 1979.
  • Bristow M, Billingham M, Mason J, and Daniels J: Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62(6), 873–879, 1978.
  • Pereira GC, Silva AM, Diogo CV, Carvalho FS, Monteiro P, et al.: Drug-induced cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr Pharm Des 17(20), 2113–2129, 2011.
  • Alexander J, Dainiak N, Berger HJ, Goldman L, Johnstone D, et al.: Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med 300(6), 278–283, 1979.
  • Chatterjee K, Zhang J, Honbo N, and Karliner JS: Doxorubicin cardiomyopathy. Cardiology 115(2), 155–162, 2009.
  • Wallace KB: Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93(3), 105–115, 2003.
  • Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, et al.: Cardiovascular complications of cancer therapy diagnosis, pathogenesis, and management. Circulation 109(25), 3122–3131, 2004.
  • Childs AC, Phaneuf SL, Dirks AJ, Phillips T, and Leeuwenburgh C: Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Res 62(16), 4592–4598, 2002.
  • Pointon AV, Walker TM, Phillips KM, Luo J, Riley J, et al.: Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 5(9), 12733, 2010.
  • Zhang S, Liu X, Bawa-Khalfe T, Lu L-S, Lyu YL, et al.: Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Med 18(11), 1639–1642, 2012.
  • Menna P, Recalcati S, Cairo G, and Minotti G: An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol 7(2), 80–85, 2007.
  • Raschi E, Vasina V, Ursino MG, Boriani G, Martoni A, et al.: Anticancer drugs and cardiotoxicity: insights and perspectives in the era of targeted therapy. Pharmacol Ther 125(2), 196–218, 2010.
  • Lebrecht D and Walker UA: Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7(2), 108–113, 2007.
  • Iarussi D, Indolfi P, Casale F, Coppolino P, Tedesco M, et al.: Recent advances in the prevention of anthracycline cardiotoxicity in childhood. Curr Med Chem 8(13), 1649–1660, 2001.
  • Takemura G and Fujiwara H: Doxorubicin-induced cardiomyopathy: from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49(5), 330–352, 2007.
  • Xiao J, Sun GB, Sun B, Wu Y, He L, et al.: Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 292(1), 53–62, 2012.
  • Bravo L: Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11), 317–333, 1998.
  • Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, and Bahorun T: Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res Fund Mol Mech Mut 579(1), 200–213, 2005.
  • Williams RJ, Spencer JP, and Rice-Evans C: Flavonoids: antioxidants or signalling molecules? Free Rad Biol Med 36(7), 838–849, 2004.
  • Dai J and Mumper RJ: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313–7352, 2010.
  • Thilakarathna SH and Rupasinghe H: Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5(9), 3367–3387, 2013.
  • Lourenco CF, Gago B, Barbosa RM, de Freitas V, and Laranjinha J: LDL isolated from plasma-loaded red wine procyanidins resist lipid oxidation and tocopherol depletion. J Agric Food Chem 56(10), 3798–3804, 2008.
  • Thilakarathna SH, Wang Y, Rupasinghe H, and Ghanam K: Apple peel flavonoid-and triterpene-enriched extracts differentially affect cholesterol homeostasis in hamsters. J Funct Foods 4(4), 963–971, 2012.
  • Noll C, Hamelet J, Matulewicz E, Paul J-L, Delabar J-M, et al.: Effects of red wine polyphenolic compounds on paraoxonase-1 and lectin-like oxidized low-density lipoprotein receptor-1 in hyperhomocysteinemic mice. J Nutr Biochem 20(8), 586–596, 2009.
  • Peterson JJ, Dwyer JT, Jacques PF, and McCullough ML: Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr Rev 70(9), 491–508, 2012.
  • Lapchak P, Maher P, Schubert D, and Zivin J: Baicalein, an antioxidant 12/15-lipoxygenase inhibitor improves clinical rating scores following multiple infarct embolic strokes. Neuroscience 150(3), 585–591, 2007.
  • Chen H-M, Hsu J-H, Liou S-F, Chen T-J, Chen L-Y, et al.: Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways. BMC Complement Altern Med 14(1), 233, 2014.
  • Chang WT, Li J, Haung HH, Liu H, Han M, et al.: Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation. J Cell Biochem 112(10), 2873–2881, 2011.
  • Aroui S, Mili D, Brahim S, Waard MD, and Kenani A: Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase. Biochem Biophys Res Commun 396(4), 908–914, 2010.
  • Yamamoto Y, Hoshino Y, Ito T, Nariai T, Mohri T, et al.: Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res 79(1), 89–96, 2008.
  • Kalender S, Kalender Y, Ates A, Yel M, Olcay E, et al.: Protective role of antioxidant vitamin E and catechin on idarubicin-induced cardiotoxicity in rats. Braz J Med Biol Res 35(11), 1379–1387, 2002.
  • Kozluca O, Olcay E, Sürücü S, Güran Z, Kulaksiz T, et al.: Prevention of doxorubicin induced cardiotoxicity by catechin. Cancer Lett 99(1), 1–6, 1996.
  • Du Y and Lou H: Catechin and proanthocyanidin B4 from grape seeds prevent doxorubicin-induced toxicity in cardiomyocytes. Eur J Pharm 591(1), 96–101, 2008.
  • Li X, Huang Q, Ong C-N, Yang X-F, and Shen H-M: Chrysin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB. Cancer Lett 293(1), 109–116, 2010.
  • Khoo BY, Chua SL, and Balaram P: Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11(5), 2188–2199, 2010.
  • Cho H, Yun C-W, Park W-K, Kong J-Y, Kim KS, et al.: Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res 49(1), 37–43, 2004.
  • Pushpavalli G, Kalaiarasi P, Veeramani C, and Pugalendi KV: Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. Eur J Pharmacol 631(1), 36–41, 2010.
  • Mantawy EM, El-Bakly WM, Esmat A, Badr AM, and El-Demerdash E: Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 728, 107–118, 2014.
  • Yang Y, Zhou X, Xiao M, Hong Z, Gong Q, et al.: Discovery of chrysoeriol, a PI3K-AKT-mTOR pathway inhibitor with potent antitumor activity against human multiple myeloma cells in vitro. J Huazhong Univ Sci Technol Med Sci 30, 734–740, 2010.
  • Liu Z, Song X-D, Xin Y, Wang X-J, Yu H, et al.: Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicity in vitro. Chin Med J (Engl) 122(21), 2652–2656, 2009.
  • Etcheverry SB, Ferrer EG, Naso L, Rivadeneira J, Salinas V, et al.: Antioxidant effects of the VO (IV) hesperidin complex and its role in cancer chemoprevention. JBIC J Biol Inorg Chem 13(3), 435–447, 2008.
  • Kalpana K, Srinivasan M, and Menon VP: Evaluation of antioxidant activity of hesperidin and its protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane. Mol Cell Biochem 323(1–2), 21–29, 2009.
  • Abdel-Raheem IT and Abdel-Ghany AA: Hesperidin alleviates doxorubicin-induced cardiotoxicity in rats. J Egypt Natl Canc Inst 21(2), 175–184, 2009.
  • Hozayen WG and Seif HSA: Protective effects of rutin and hesperidin against doxorubicin-induced lipodystrophy and cardiotoxicity in albino rats. J Am Sci 7(12), 765–775, 2011.
  • Ameer B, Weintraub RA, Johnson JV, Yost RA, and Rouseff RL: Flavanone absorption after naringin, hesperidin, and citrus administration. Clin Pharm Ther 60(1), 34–40, 1996.
  • Lee N-K, Choi S-H, Park S-H, Park E-K, and Kim D-H: Antiallergic activity of hesperidin is activated by intestinal microflora. Pharmacology 71(4), 174–180, 2004.
  • Trivedi P, Kushwaha S, Tripathi D, and Jena G: Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat. Cardiovasc Toxicol 11(3), 215–225, 2011.
  • Zhao G, Duan J, Xie Y, Lin G, Luo H, et al.: Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L. Drug Dev Ind Pharm 39(7), 1037–1045, 2013.
  • Panda VS and Naik SR: Evaluation of cardioprotective activity of Ginkgo biloba and Ocimum sanctum in rodents. Altern Med Rev 14(2), 161, 2009.
  • Han X, Gao S, Cheng Y, Sun Y, Liu W, et al.: Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes. Biosci Trends 6(1), 19–25, 2012.
  • Sun J, Sun G, Meng X, Wang H, Luo Y, et al.: Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One 8(5), e64526, 2013.
  • Morrison DK: MAP kinase pathways. Cold Spring Harb Perspect Biol 4(11), e11254, 2012.
  • Olszewska M: Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inflorescences, leaves and fruits of three< i>Sorbusspecies. J Pharm Biomed Anal 48(3), 629–635, 2008.
  • Keyhanian S and Stahl-Biskup E: Phenolic constituents in dried flowers of aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Med 73(06), 599–602, 2007.
  • Li N, Liu J-H, Zhang J, and Yu B-Y: Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. J Agr Food Chem 56(10), 3876–3883, 2008.
  • Bhouri W, Bouhlel I, Boubaker J, Kilani S, Ghedira K, et al.: Induction of apoptosis in human lymphoblastoid cells by kaempferol 3-O-beta-isorhamninoside and rhamnocitrin 3-O-beta-isorhamninoside from Rhamnus alaternus L. (Rhamnaceae). Cell Prolif 44(3), 283–290, 2011.
  • Jang YJ, Kim J, Shim J, Kim J, Byun S, et al.: Kaempferol attenuates 4-hydroxynonenal-induced apoptosis in PC12 cells by directly inhibiting NADPH oxidase. J Pharmacol Exp Ther 337(3), 747–754, 2011.
  • Kim JM, Lee EK, Kim DH, Yu BP, and Chung HY: Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age 32(2), 197–208, 2010.
  • Park MJ, Lee EK, Heo H-S, Kim M-S, Sung B, et al.: The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-κ B via nuclear factor-inducing kinase/I κ B kinase and mitogen-activated protein kinase pathways. J Med Food 12(2), 351–358, 2009.
  • Acker DA, Kramer K, Grimbergen JA, Berg DJ, Vijgh WJ, et al.: Monohydroxyethylrutoside as protector against chronic doxorubicin‐induced cardiotoxicity. British J Pharmacol 115(7), 1260–1264, 1995.
  • van Acker FA, van Acker SA, Kramer K, Haenen GR, Bast A, et al.: 7-monohydroxyethylrutoside protects against chronic doxorubicin-induced cardiotoxicity when administered only once per week. Clin Cancer Res 6(4), 1337–1341, 2000.
  • Bruynzeel AM, Mul PP, Berkhof J, Bast A, Niessen HW, et al.: The influence of the time interval between monoHER and doxorubicin administration on the protection against doxorubicin-induced cardiotoxicity in mice. Cancer Chemoth Pharm 58(5), 699–702, 2006.
  • Bruynzeel AM, Vormer-Bonne S, Bast A, Niessen HW, and van der Vijgh WJ: Long-term effects of 7-monohydroxyethylrutoside (monoHER) on DOX-induced cardiotoxicity in mice. Cancer Chemoth Pharm 60(4), 509–514, 2007.
  • El Hassan MA, Verheul H, Jorna A, Schalkwijk C, Van Bezu J, et al.: The new cardioprotector monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro. British J Cancer 89(2), 357–362, 2003.
  • Bruynzeel AM, El Hassan MA, Schalkwijk C, Berkhof J, Bast A, et al.: Anti-inflammatory agents and monoHER protect against DOX-induced cardiotoxicity and accumulation of CML in mice. Br J Cancer 96(6), 937–943, 2007.
  • van Acker SA, Boven E, Kuiper K, van den Berg DJ, Grimbergen JA, et al.: Monohydroxyethylrutoside, a dose-dependent cardioprotective agent, does not affect the antitumor activity of doxorubicin. Clin Cancer Res 3(10), 1747–1754, 1997.
  • Willems AM, Bruynzeel AM, Kedde MA, Van Groeningen CJ, Bast A, et al.: A phase I study of monohydroxyethylrutoside in healthy volunteers. Cancer Chemother Pharmacol 57(5), 678–684, 2006.
  • Bruynzeel AM, Niessen HW, Bronzwaer JG, van der Hoeven JJ, Berkhof J, et al.: The effect of monohydroxyethylrutoside on doxorubicin-induced cardiotoxicity in patients treated for metastatic cancer in a phase II study. Br J Cancer 97(8), 1084–1089, 2007.
  • More SH, Sathe SB, Sonawane AA, Jadhav AP, and Kadam VJ: Estimation of naringin and hesperidin from citrus fruits by HPTLC. Am J Pharm Res 3(8), 6175–6183, 2013.
  • Middleton Jr E and Kandaswami C: Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43(6), 1167–1179, 1992.
  • Kao Y-C, Zhou C, Sherman M, Laughton CA, and Chen S: Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ Health Perspect 106(2), 85, 1998.
  • Guthrie N and Carroll K: Inhibition of mammary cancer by citrus flavonoids. In: Flavonoids in the Living System, Manthey J and Buslig B (eds.). New York: Springer, 1998, pp. 227–236.
  • Jeon S-M, Park YB, and Choi M-S: Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clin Nutr 23(5), 1025–1034, 2004.
  • Jagetia GC and Reddy TK: Alleviation of iron induced oxidative stress by the grape fruit flavanone naringin in vitro. Chem Biol Interact 190(2), 121–128, 2011.
  • Arafa HM, Abd-Ellah MF, and Hafez HF: Abatement by naringenin of doxorubicin-induced cardiac toxicity in rats. J Egypt Natl Canc Inst 17, 291–300, 2005.
  • Jagetia GC and Reddy TK: The grape fruit flavonone naringin protects mice against doxorubicin-induced cardiotoxicity. J Mol Biochem 3(1), 34–49, 2014.
  • Shiromwar SS and Chidrawar VR: Combined effects of p-coumaric acid and naringenin against doxorubicin-induced cardiotoxicity in rats. Pharmacognosy Res 3(3), 214, 2011.
  • Han X, Ren D, Fan P, Shen T, and Lou H: Protective effects of naringenin-7-O-glucoside on doxorubicin-induced apoptosis in H9C2 cells. Eur J Pharma 581(1), 47–53, 2008.
  • Han X, Pan J, Ren D, Cheng Y, Fan P, et al.: Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes. Food Chem Toxicol 46(9), 3140–3146, 2008.
  • Cavin C, Marin-Kuan M, Langouët S, Bezençon C, Guignard G, et al.: Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver. Food Chem Toxicol 46(4), 1239–1248, 2008.
  • Manandhar S, Cho J-M, Kim J, Kensler TW, and Kwak M-K: Induction of Nrf2-regulated genes by 3 H-1, 2-dithiole-3-thione through the ERK signaling pathway in murine keratinocytes. Eur J Pharmacol 577(1), 17–27, 2007.
  • Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, et al.: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20), 7198–7209, 2003.
  • Sugden PH and Clerk A: Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 8(11–12), 2111–2124, 2006.
  • Papasani VMR, Hanumantharayappa B, and Annapurna A: Cardioprotective effect of naringin against doxorubicin induced cardiomyopathy in rats. Indo Am J Pharma Res 4(5), 2593–2598, 2014.
  • Chuang C-C, Martinez K, Xie G, Kennedy A, Bumrungpert A, et al.: Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-α–mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 92(6), 1511–1521, 2010.
  • Chen J-Y, Hu R-Y, and Chou H-C: Quercetin-induced cardioprotection against doxorubicin cytotoxicity. J Biomed Sci 20(1), 95, 2013.
  • Nazmi AS, Ahmad SJ, Pillai KK, Akhtar M, Ahmad A, et al.: Protective effects of Bombyx mori, quercetin and benazepril against doxorubicin induced cardiotoxicity and nephrotoxicity. J Saudi Chem Soc 2013.
  • Matouk AI, Taye A, Heeba GH, and El-Moselhy MA: Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats. Environ Toxicol Pharmacol 36(2), 443–450, 2013.
  • Ismail IH, Andrin C, McDonald D, and Hendzel MJ: BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 191(1), 45–60, 2010.
  • Chatoo W, Abdouh M, David J, Champagne M-P, Ferreira J, et al.: The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci 29(2), 529–542, 2009.
  • Dong Q, Chen L, Lu Q, Sharma S, Li L, et al.: Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi‐1 expression. Br J Pharmacol 171(19):4440–4454, 2014.
  • Pei TX, Xu CQ, Li B, Zhang ZR, Gao XX, et al.: Protective effect of quercetin against adriamycin-induced cardiotoxicity and its mechanism in mice. Yao Xue Xue Bao 42(10), 1029–1033, 2007.
  • Atanassova M and Bagdassarian V: Rutin content in plant products. J Univers Chem Technol Metallurgy 44(2), 201–203, 2009.
  • Hui CK, Mahdy ZA, Nordin NAMM, Ugusman A and Zakaria Z: Flavonoids of Piper sarmentosum and its cytoprotective effects against oxidative stress. Experiment Clin Sci Inter 11,705–714, 2012.
  • Ugusman A, Zakaria Z, Chua KH, Megat Mohd Nordin NA, and Abdullah Mahdy Z: Role of rutin on nitric oxide synthesis in human umbilical vein endothelial cells. Sci World J, ID 169370, 2014.
  • Ashokkumar P and Sudhandiran G: Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother 62(9), 590–597, 2008.
  • Nishitani Y, Yamamoto K, Yoshida M, Azuma T, Kanazawa K, et al.: Intestinal anti‐inflammatory activity of luteolin: role of the aglycone in NF‐κB inactivation in macrophages co‐cultured with intestinal epithelial cells. Biofactors 39(5), 522–533, 2013.
  • Xu T, Li D, and Jiang D: Targeting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients 4(12), 2008–2019, 2012.
  • Salib JY, Michael HN, and Eskande EF: Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats. Pharmacognosy Res 5(1), 22, 2013.
  • Ashokkumar P and Sudhandiran G: Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/β-catenin pathway. Invest New Drugs 29(2), 273–284, 2011.
  • Sadzuka Y, Sugiyama T, Shimoi K, Kinae N, and Hirota S: Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicol Lett 92(1), 1–7, 1997.
  • Wang S-Q, Han X-Z, Li X, Ren D-M, Wang X-N, et al.: Flavonoids from Dracocephalum tanguticum and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Bioorg Med Chem Lett 20(22), 6411–6415, 2010.
  • Manach C, Williamson G, Morand C, Scalbert A, and Rémésy C: Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1), 230S–242S, 2005.
  • Mullen W, Edwards CA, and Crozier A: Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl-and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr 96(01), 107–116, 2006.
  • Rupasinghe H, Ronalds CM, Rathgeber B, and Robinson RA: Absorption and tissue distribution of dietary quercetin and quercetin glycosides of apple skin in broiler chickens. J Sci Food Agric 90(7), 1172–1178, 2010.
  • Thilakarathna SH, Rupasinghe H, and Needs PW: Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Food Chem 138(1), 463–470, 2013.
  • Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, et al.: Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr 34(6) 1101–1108, 2015.
  • Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, and Sahebkar A: Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med 22(5), 851–857, 2014.
  • Sahebkar A: Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol 11(2), 123, 2014.
  • Sahebkar A: Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res: PTR 28(5), 633–642, 2014.
  • Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, et al.: Curcuminoids modulate pro-oxidant-antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res: PTR 27(12), 1883–1888, 2013.
  • Sahebkar A: Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 39(2), 197–208, 2013.
  • Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, et al.: Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res: PTR 27(3), 374–379, 2013.
  • Sahebkar A, Chew GT and Watts GF: Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 56(47–66), 2014.
  • Venkatesan N: Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 124(3), 425–427, 1998.
  • Swamy AV, Gulliaya S, Thippeswamy A, Koti BC, and Manjula DV: Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol 44(1), 73–77, 2012.
  • Imbaby S, Ewais M, Essawy S, and Farag N: Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Hum Exp Toxicol 33(8), 800–813, 2014.
  • Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, et al.: Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 49(5), 1102–1109, 2011.
  • Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, et al.: Effect of curcumin on doxorubicin-induced cytotoxicity in H9c2 cardiomyoblast cells. Iranian J Basic Med Sci 14, 161, 2011.
  • Ribeiro N, Thuaud F, Nebigil C, and Désaubry L: Recent advances in the biology and chemistry of the flavaglines. Bioorg Med Chem 20(6), 1857–1864, 2012.
  • Ribeiro N, Thuaud F, Bernard Y, Gaiddon C, Cresteil T, et al.: Flavaglines as potent anticancer and cytoprotective agents. J Med Chem 55(22), 10064–10073, 2012.
  • Bernard Y, Ribeiro N, Thuaud F, Türkeri G, Dirr R, et al.: Flavaglines alleviate doxorubicin cardiotoxicity: implication of Hsp27. PLoS ONE 6(10), 2011.
  • Flora K, Hahn M, Rosen H, and Benner K: Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 93(2), 139–143, 1998.
  • Wellington K and Jarvis B: Silymarin: a review of its clinical properties in the management of hepatic disorders. BioDrugs 15(7), 465–489, 2001.
  • Dixit N, Baboota S, Kohli K, Ahmad S, and Ali J: Silymarin: a review of pharmacological aspects and bioavailability enhancement approaches. Indian J Pharmacol 39(4), 172–179, 2007.
  • Psotová J, Chlopčíková Š, Grambal F, Šimánek V, and Ulrichová J: Influence of silymarin and its flavonolignans on doxorubicin‐iron induced lipid peroxidation in rat heart microsomes and mitochondria in comparison with quercetin. Phytother Res 16(S1), 63–67, 2002.
  • Makena PS, Pierce SC, Chung KT, and Sinclair SE: Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP‐2 uvrA. Environ Mol Mutagen 50(6), 451–459, 2009.
  • Chlopčíková Š, Psotová J, Miketová P, and Šimánek V: Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part I. Silymarin and its flavonolignans. Phytother Res 18(2), 107–110, 2004.
  • El-Shitany NA, El-Haggar S, and El-desoky K: Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food Chem Toxicol 46(7), 2422–2428, 2008.
  • Rašković A, Stilinović N, Kolarović J, Vasović V, Vukmirović S, et al.: The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules 16(10), 8601–8613, 2011.
  • Fouad AA and Yacoubi MT: Mechanisms underlying the protective effect of eugenol in rats with acute doxorubicin cardiotoxicity. Arch Pharm Res 34(5), 821–828, 2011.
  • Fadillioglu E, Oztas E, Erdogan H, Yagmurca M, Sogut S, et al.: Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol 24(1), 47–52, 2004.
  • Kim DS, Woo ER, Chae SW, Ha KC, Lee GH, et al.: Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-κB activation. Life Sci 80(4), 314–323, 2007.
  • Russo A, Longo R, and Vanella A: Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73, S21–S29, 2002.
  • Wang X-L, Wang X, Xiong L-L, Zhu Yc, Chen H-L, Chen J-X, et al.: Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. J Cardiovasc Pharmacol 62, 512–523, 2013.
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, and Ramirez-Tortosa MC: Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68(4), 191–206, 2010.
  • Granados-Principal S, El-Azem N, Pamplona R, Ramirez-Tortosa C, Pulido-Moran M, et al.: Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer. Biochem Pharmacol 90(1), 25–33, 2014.
  • Andreadou I, Sigala F, Iliodromitis EK, Papaefthimiou M, Sigalas C, et al.: Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J Mol Cell Cardiol 42(3), 549–558, 2007.
  • Andreadou I, Papaefthimiou M, Zira A, Constantinou M, Sigala F, et al.: Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural antioxidant oleuropein. NMR Biomed 22(6), 585–592, 2009.
  • Kim M and Tian R: Targeting AMPK for cardiac protection: opportunities and challenges. J Mol Cell Cardiol 51(4), 548–553, 2011.
  • Menendez JA, Joven J, Aragones G, Barrajon-Catalan E, Beltran-Debon R, et al.: Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 12(4), 555–578, 2013.
  • Andreadou I, Mikros E, Ioannidis K, Sigala F, Naka K, et al.: Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J Mol Cell Cardiol 69, 4–16, 2014.
  • Pangeni R, Sahni JK, Ali J, Sharma S, and Baboota S: Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Del 11(8), 1285–1298, 2014.
  • Brookins Danz ED, Skramsted J, Henry N, Bennett JA, and Keller RS: Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46(12), 1589–1597, 2009.
  • Tatlidede E, Şehirli Ö, Velioglu-Ögüç A, Çetinel S, Yegen BÇ, et al.: Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res 43(3), 195–205, 2009.
  • Zhang C, Feng Y, Qu S, Wei X, Zhu H, et al.: Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90(3), 538–545, 2011.
  • Pinarli FA, Turan NN, Pinarli FG, Okur A, Sönmez D, et al.: Resveratrol and adipose-derived mesenchymal stem cells are effective in the prevention and treatment of doxorubicin cardiotoxicity in rats. Pediatr Hematol Oncol 30(3), 226–238, 2013.
  • Cao Z and Li Y: Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 489(1–2), 39–48, 2004.
  • Beher D, Wu J, Cumine S, Kim KW, Lu S-C, et al.: Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6), 619–624, 2009.
  • Dirks-Naylor AJ: The role of autophagy in doxorubicin-induced cardiotoxicity. Life Sci 93(24), 913–916, 2013.
  • Xu X, Chen K, Kobayashi S, Timm D, and Liang Q: Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther 341(1), 183–195, 2012.
  • Wenzel E and Somoza V: Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49(5), 472–481, 2005.
  • Gu J, Song ZP, Gui DM, Hu W, Chen YG, et al.: Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in lymphoma nude mice by heme oxygenase-1 induction. Cardiovasc Toxicol 12(4), 341–349, 2012.
  • Arafa MH, Mohammad NS, Atteia HH, and Abd-Elaziz HR: Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J Physiol Biochem 70(3), 701–711, 2014.
  • Bernuzzi F, Recalcati S, Alberghini A, and Cairo G: Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: role for heme oxygenase-1 down-modulation. Chem Biol Interact 177(1), 12–20, 2009.
  • Díaz-Chávez J, Fonseca-Sánchez MA, Arechaga-Ocampo E, Flores-Pérez A, Palacios-Rodríguez Y, et al.: Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy. PLoS ONE 8(5), e64378, 2013.
  • Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, et al.: Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta 1840(1), 615–625, 2014.
  • Osman AM, Al-Harthi SE, AlArabi OM, Elshal MF, Ramadan WS, et al.: Chemosensetizing and cardioprotective effects of resveratrol in doxorubicin-treated animals. Cancer Cell Int 13(52), 2013.
  • Carlson LJ, Cote B, Alani AW, and Rao DA: Polymeric micellar co-delivery of resveratrol and curcumin to mitigate in vitro doxorubicin-induced cardiotoxicity. J Pharm Sci 103(8):2315–2322, 2014.
  • Zhang SH, Wang WQ, and Wang JL: Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo. Acta Pharmacol Sin 30(11), 1479–1487, 2009.
  • Nayak PG, Paul P, Bansal P, Kutty NG, and Pai KS: Sesamol prevents doxorubicin-induced oxidative damage and toxicity on H9c2 cardiomyoblasts. J Pharm Pharmacol 65(7), 1083–1093, 2013.
  • Chennuru A and Saleem MT: Antioxidant, lipid lowering, and membrane stabilization effect of sesamol against doxorubicin-induced cardiomyopathy in experimental rats. Biomed Res Int 2013, 934239, 2013.
  • Liang Y: Clinical study on “sini” decoction on treating stenocardia for coronary heart disease. Zhong Yao Cai 28(8), 737–739, 2005.
  • Chen YL, Zhuang XD, Xu ZW, Lu LH, Guo HL, et al.: Higenamine combined with [6]-gingerol suppresses doxorubicin-triggered oxidative stress and apoptosis in cardiomyocytes via upregulation of PI3K/Akt pathway. Evid Based Complement Alternat Med 2013, 970490, 2013.
  • El-Bakly WM, Louka ML, El-Halawany AM, and Schaalan MF: 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation. Cancer Chemother Pharmacol 70(6), 833–841, 2012.
  • Balasundram N, Sundram K, and Samman S: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1), 191–203, 2006.
  • Michalak A: Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environl Stud 15(4), 523, 2006.
  • Milić BL, Djilas SM, and Čanadanović-Brunet JM: Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem 61(4), 443–447, 1998.
  • Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, and Camello PJ: Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol-Cell Physiol 291(5), C1082–C1088, 2006.
  • Gen W, Tani M, Takeshita J, Ebihara Y, and Tamaki K: Mechanisms of Ca2+ overload induced by extracellular H2O2 in quiescent isolated rat cardiomyocytes. Basic Res Cardiol 96(6), 623–629, 2001.
  • Zeng Q, Zhou Q, Yao F, O'Rourke ST, and Sun C: Endothelin-1 regulates cardiac L-type calcium channels via NAD (P) H oxidase-derived superoxide. J Pharmacol Exp Ther 326(3), 732–738, 2008.
  • Zhang Y-W, Shi J, Li Y-J, and Wei L: Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp 57(6), 435–445, 2009.
  • Kim D-S, Woo E-R, Chae S-W, Ha K-C, Lee G-H, et al.: Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-κB activation. Life Sci 80(4), 314–323, 2007.
  • Li H, Gu H, and Sun B: Protective effects of pyrrolidine dithiocarbamate on myocardium apoptosis induced by adriamycin in rats. Int J Cardiol 114(2), 159–165, 2007.
  • Velderrain-Rodríguez G, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala J, Chen CO, et al.: Phenolic compounds: their journey after intake. Food Funct 5(2), 189–197, 2014.
  • Rubio L, Macia A, and Motilva M-J: Impact of various factors on pharmacokinetics of bioactive polyphenols: an overview. Curr Drug Metab 15(1), 62–76, 2014.
  • Li Z, Jiang H, Xu C and Gu L: A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 43, 153–164, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.