513
Views
32
CrossRef citations to date
0
Altmetric
Review Article

Curcumin and Melanoma: From Chemistry to Medicine

, , , , , , , , & show all
Pages 164-175 | Received 14 Aug 2016, Accepted 26 Sep 2017, Published online: 04 Jan 2018

References

  • Gandini S, Sera F, Cattaruzza MS, Pasquini P, Zanetti R, et al.: Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer 41(14), 2040–2059, 2005. doi:10.1016/j.ejca.2005.03.034.
  • Raimondi S, Sera F, Gandini S, Iodice S, Caini S, et al.: MC1R variants, melanoma and red hair color phenotype: a meta‐analysis. Int J Cancer 122(12), 2753–2760, 2008. doi:10.1002/ijc.23396.
  • Xiong MY, Rabkin MS, Piepkorn MW, Barnhill RL, Argenyi Z, et al.: Diameter of dysplastic nevi is a more robust biomarker of increased melanoma risk than degree of histologic dysplasia: a case-control study. J Am Acad Dermatol 6(71), 1257–1258, e4, 2014. doi:10.1016/j.jaad.2014.07.030.
  • Whiteman DC, Watt P, Purdie DM, Hughes MC, Hayward NK, et al.: Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst 95(11), 806–812, 2003. doi:10.1093/jnci/95.11.806.
  • Malagoli C, Malavolti M, Agnoli C, Crespi CM, Fiorentini C, et al.: Diet quality and risk of melanoma in an Italian population. J Nutr 145(8), 1800–1807, 2015. doi:10.3945/jn.114.209320.
  • Darvesh AS, Aggarwal BB, and Bishayee A: Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13(1), 218–228, 2012. doi:10.2174/138920112798868791.
  • Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, et al.: Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investigat Drugs 21(8), 1123–1140, 2012. doi:10.1517/13543784.2012.693479.
  • Sinha D, Biswas J, Sung B, Aggarwal BB, and Bishayee A: Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets. 13(14), 1799–1819, 2012. doi:10.2174/138945012804545632.
  • Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, and Nabavi SM: Curcumin and liver disease: from chemistry to medicine. Compre Rev Food Sci Food Safe 13(1), 62–77, 2014. doi:10.1111/1541-4337.12047.
  • Mahmood K, Zia KM, Zuber M, Salman M, and Anjum MN: Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: a review. Int J Biol Macromol 81, 877–890, 2015. doi:10.1016/j.ijbiomac.2015.09.026.
  • Jannin V, Chevrier S, Michenaud M, Dumont C, Belotti S, et al.: Development of self emulsifying lipid formulations of BCS class II drugs with low to medium lipophilicity. Int J Pharm 495(1), 385–392, 2015 doi:10.1016/j.ijpharm.2015.09.009.
  • Aggarwal BB and Sung B: Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30(2), 85–94, 2009. doi:10.1016/j.tips.2008.11.002.
  • Xie X, Tao Q, Zou Y, Zhang F, Guo M, et al: PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem 59(17), 9280–9299, 2011. doi:10.1021/jf202135j.
  • Yang C, Su X, Liu A, Zhang L, Yu A, et al.: Advances in clinical study of curcumin. Curr Pharm Des 19(11), 1966–1973, 2013.
  • Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, et al.: Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5(3), 1–18, 2007.
  • Ranjan AP, Mukerjee A, Helson L, Gupta R, and Vishwanatha JK: Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis. Anticancer Res 33(9), 3603–3609, 2013;
  • Peng JR and Qian ZY: Drug delivery systems for overcoming the bioavailability of curcumin: not only the nanoparticle matters. Nanomedicine 9(6), 747, 2014. doi:10.2217/nnm.14.21.
  • Rao KM, Rao KK, Ramanjaneyulu G, and Ha CS: Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int J Pharm 478(2), 788–795, 2015. doi:10.1016/j.ijpharm.2014.12.001.
  • He X, Li Q, Liu X, Wu G, and Zhai G: Curcumin-loaded lipid cubic liquid crystalline nanoparticles: preparation, optimization, physicochemical properties and oral absorption. J Nanosci Nanotechnol 15(8), 5559–5565, 2015. doi:10.1166/jnn.2015.10311.
  • Sari T, Mann B, Kumar R, Singh R, Sharma R, et al.: Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43, 540–546, 2015. doi:10.1016/j.foodhyd.2014.07.011.
  • Jang DJ, Kim ST, Oh E, and Lee K: Enhanced oral bioavailability and antiasthmatic efficacy of curcumin using redispersible dry emulsion. Bio-Med Mater Eng 24(1), 917–930, 2013.
  • Garcea G, Jones D, Singh R, Dennison A, Farmer P, et al.: Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90(5), 1011–1015, 2004. doi:10.1038/sj.bjc.6601623.
  • Li L, Braiteh FS, and Kurzrock R: Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104(6), 1322–1331, 2005. doi:10.1002/cncr.21300.
  • Patil S, Choudhary B, Rathore A, Roy K, and Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine 22(12), 1103–1111, 2015. doi:10.1016/j.phymed.2015.08.006.
  • Songkroh T, Xie H, Yu W, Liu X, Sun G, et al.: Injectable in situ forming chitosan-based hydrogels for curcumin delivery. Macromol Res 23(1), 53–59, 2015. doi:10.1007/s13233-015-3006-4.
  • Shin GH, Chung SK, Kim JT, Joung HJ, and Park HJ. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J Agric Food Chem 61(46), 11119–11126, 2013. doi:10.1021/jf4035404.
  • Shelma R and Sharma CP: In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr polym 95(1), 441–448, 2013. doi:10.1016/j.carbpol.2013.02.029.
  • Zhang J, Tang Q, Xu X, and Li N: Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 448(1), 168–174, 2013. doi:10.1016/j.ijpharm.2013.03.021.
  • Alam S, Panda JJ, and Chauhan VS: Novel dipeptide nanoparticles for effective curcumin delivery. Int J Nanomed 7, 4207, 2012.
  • Ucisik MH, Küpcü S, Schuster B, and Sleytr UB: Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnol 11, 37, 2013. doi:10.1186/1477-3155-11-37.
  • Gangwar RK, Tomar GB, Dhumale VA, Zinjarde S, Sharma RB, et al.: Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J Agric Food Chem 61(40), 9632–9637, 2013.
  • Xiao Y, Chen X, Yang L, Zhu X, Zou L, et al.: Preparation and oral bioavailability study of curcuminoid-loaded microemulsion. J Agric Food Chem 61(15), 3654–3660, 2013. doi:10.1021/jf400002x.
  • Li C, Zhang Y, Su T, Feng L, Long Y, et al.: Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomed 7, 5995, 2012. doi:10.2147/IJN.S38043.
  • Kharkwal H, Bala K, Joshi D, and Katare DP: Bioavailability enhancement of curcuminoids using natural polymer. Der Pharmacia Lettre 4(6), 1698–1711, 2012.
  • Bush JA, Cheung KJ, Jr., and Li G: Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271(2), 305–314, 2001. doi:10.1006/excr.2001.5381.
  • Zheng M, Ekmekcioglu S, Walch ET, Tang CH, and Grimm EA: Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res 14(3), 165–171, 2004. doi:10.1097/01.cmr.0000129374.76399.19.
  • Siwak DR, Shishodia S, Aggarwal BB, and Kurzrock R: Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104(4), 879–890, 2005. doi:10.1002/cncr.21216.
  • Marin YE, Wall BA, Wang S, Namkoong J, Martino JJ, et al.: Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res 17(5), 274–283, 2007. doi:10.1097/CMR.0b013e3282ed3d0e.
  • Lu C, Song E, Hu DN, Chen M, Xue C, et al.: Curcumin induces cell death in human uveal melanoma cells through mitochondrial pathway. Curr Eye Res 35(4), 352–360, 2010. doi:10.3109/02713680903521944.
  • Bill MA, Bakan C, Benson DM, Jr., Fuchs J, Young G, et al.: Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines. Mol Cancer Ther 8(9), 2726–2735, 2009. doi:10.1158/1535-7163.MCT-09-0377.
  • Abusnina A, Keravis T, Yougbare I, Bronner C, and Lugnier C: Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol Nutr Food Res 55(11), 1677–1689, 2011. doi:10.1002/mnfr.201100307.
  • Qiu Y, Yu T, Wang W, Pan K, Shi D, et al.: Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem Biophys Res Commun 448(1), 15–21, 2014. doi:10.1016/j.bbrc.2014.04.024.
  • Zhao G, Han X, Zheng S, Li Z, Sha Y, et al.: Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol Rep 35(2), 1065–1074, 2016. doi:10.3892/or.2015.4413.
  • Zhang YP, Li YQ, Lv YT, and Wang JM: Effect of curcumin on the proliferation, apoptosis, migration, and invasion of human melanoma A375 cells. Genet Mol Res 14(1), 1056–1067, 2015. doi:10.4238/2015.February.6.9.
  • Dahmke IN, Backes C, Rudzitis-Auth J, Laschke MW, Leidinger P, et al.: Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS One 8(12), e81122, 2013. doi:10.1371/journal.pone.0081122.
  • Lelli D, Pedone C, and Sahebkar A: Curcumin and treatment of melanoma: the potential role of microRNAs. Biomed Pharmacother 88, 832–834, 2017. doi:10.1016/j.biopha.2017.01.078.
  • Chen LX, He YJ, Zhao SZ, Wu JG, Wang JT, et al.: Inhibition of tumor growth and vasculogenic mimicry by curcumin through down-regulation of the EphA2/PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther. 11(2), 229–235, 2011 doi:10.4161/cbt.11.2.13842.
  • Bachmeier BE, Iancu CM, Killian PH, Kronski E, Mirisola V, et al.: Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells. Mol Cancer 8, 129, 2009. doi:10.1186/1476-4598-8-129.
  • Pisano M, Pagnan G, Dettori MA, Cossu S, Caffa I, et al., Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Mol Cancer 9, 137, 2010. doi:10.1186/1476-4598-9-137.
  • Rozzo C, Fanciulli M, Fraumene C, Corrias A, Cubeddu T, et al.: Molecular changes induced by the curcumin analogue D6 in human melanoma cells. Mol Cancer 12, 37, 2013 doi:10.1186/1476-4598-12-37.
  • Pisano M, Palomba A, Tanca A, Pagnozzi D, Uzzau S, et al.: Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6. BMC cancer 16(1), 317, 2016. doi:10.1186/s12885-016-2362-6.
  • Rozzo C, Fanciulli M, Fraumene C, Corrias A, Cubeddu T, et al.: Molecular changes induced by the curcumin analogue D6 in human melanoma cells. Mol cancer 12(1), 37, 2013. doi:10.1186/1476-4598-12-37.
  • Bill MA, Fuchs JR, Li C, Yui J, Bakan C, et al.: The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer 9, 165, 2010. doi:10.1186/1476-4598-9-165.
  • Bill MA, Nicholas C, Mace TA, Etter JP, Li C, et al.: Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines. PLoS One 7(8), e40724, 2012. doi:10.1371/journal.pone.0040724.
  • Zhang P, Bai H, Liu G, Wang H, Chen F, et al.: MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 234(3), 151–161, 2015. doi:10.1016/j.toxlet.2015.02.018.
  • Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, et al.: Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 35 Suppl:S276–S304, 2015 doi:10.1016/j.semcancer.2015.09.007.
  • Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, et al.: Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35 Suppl:S78–S103, 2015. doi:10.1016/j.semcancer.2015.03.001.
  • Yu T, Li J, and Sun H: C6 ceramide potentiates curcumin-induced cell death and apoptosis in melanoma cell lines in vitro. Cancer Chemother Pharmacol. 66(5), 999–1003, 2010. doi:10.1007/s00280-010-1374-1.
  • Odot J, Albert P, Carlier A, Tarpin M, Devy J, et al.: In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer 111(3), 381–387, 2004. doi:10.1002/ijc.20160.
  • Chatterjee SJ and Pandey S: Chemo-resistant melanoma sensitized by tamoxifen to low dose curcumin treatment through induction of apoptosis and autophagy. Cancer Biol Ther 11(2), 216–228, 2011. doi:10.4161/cbt.11.2.13798.
  • Buss S, Dobra J, Goerg K, Hoffmann S, Kippenberger S, et al.: Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS One 8(11):e79748, 2013. doi:10.1371/journal.pone.0079748.
  • Niu T, Tian Y, Mei Z, and Guo G: Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells. Sci Rep 6, 31383, 2016. doi:10.1038/srep31383.
  • Chen J, Li L, Su J, Li B, Chen T, et al.: Synergistic apoptosis-inducing effects on A375 human melanoma cells of natural borneol and curcumin. PLoS One 9(6), e101277, 2014. doi:10.1371/journal.pone.0101277.
  • Chou TC and Talalay P: Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27–55, 1984. doi:10.1016/0065-2571(84)90007-4.
  • Vela L and Marzo I: Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol 23, 74–81, 2015 doi:10.1016/j.coph.2015.05.014.
  • Yu T, Chen C, Sun Y, Sun H, Li TH, et al.: ABT-737 sensitizes curcumin-induced anti-melanoma cell activity through facilitating mPTP death pathway. Biochem Biophys Res Commun 464(1), 286–291, 2015. doi:10.1016/j.bbrc.2015.06.144.
  • Faiao-Flores F, Quincoces Suarez JA, Fruet AC, Maria-Engler SS, Pardi PC, et al.: Curcumin analog DM-1 in monotherapy or combinatory treatment with dacarbazine as a strategy to inhibit in vivo melanoma progression. PLoS One 10(3), e0118702, 2015. doi:10.1371/journal.pone.0118702.
  • Mazzarino L, Silva LF, Curta JC, Licinio MA, Costa A, et al.: Curcumin-loaded lipid and polymeric nanocapsules stabilized by nonionic surfactants: an in vitro and In vivo antitumor activity on B16-F10 melanoma and macrophage uptake comparative study. J Biomed Nanotechnol 7(3), 406–414, 2011. doi:10.1166/jbn.2011.1296.
  • de Souza FF, dos Santos MC, dos Passos DC, Lima EC, and Guillo LA: Curcumin associated magnetite nanoparticles inhibit in vitro melanoma cell growth. J Nanosci Nanotechnol 11(9), 7603–7610, 2011. doi:10.1166/jnn.2011.5124.
  • Michel D, Chitanda JM, Balogh R, Yang P, Singh J, et al.: Design and evaluation of cyclodextrin-based delivery systems to incorporate poorly soluble curcumin analogs for the treatment of melanoma. Eur J Pharm Biopharm 81(3), 548–556, 2012. doi:10.1016/j.ejpb.2012.03.016.
  • Sun Y, Du L, Liu Y, Li X, Li M, et al.: Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-beta-cyclodextrin for melanoma treatment. Int J Pharm 469(1), 31–39, 2014. doi:10.1016/j.ijpharm.2014.04.039.
  • Loch-Neckel G, Santos-Bubniak L, Mazzarino L, Jacques AV, Moccelin B, et al.: Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J Pharm Sci. 104(10), 3524–3534. 2015. doi:10.1002/jps.24548.
  • Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, et al.: Curcumin: a new candidate for melanoma therapy? Int J Cancer 139(8), 1683–1695, 2016. doi:10.1002/ijc.30224.
  • Saeidnia S and Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol 271(1), 49–63, 2013. doi:10.1016/j.taap.2013.05.004.
  • Abdollahi M and Shetab-Boushehri SV. Is it right to look for anti-cancer drugs amongst compounds having antioxidant effect? DARU 20, 61, 2017. doi:10.1186/2008-2231-20-61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.