40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nobiletin Inhibits Breast Cancer Stem Cell by Regulating the Cell Cycle: A Comprehensive Bioinformatics Analysis and In Vitro Experiments

ORCID Icon, ORCID Icon, ORCID Icon, &
Received 24 Oct 2023, Accepted 18 Apr 2024, Published online: 09 May 2024

References

  • Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23. 10.1016/j.breast.2022.08.010
  • Oliva D, Andersson B-Å, Nilsson M, Lewin N, Lewin F. Risk for relapse and death after adjuvant chemotherapy associated with SNPs in patients with breast cancer - a retrospective study. Cancer Treat Res Commun. 2022;30:100505. 10.1016/j.ctarc.2021.100505
  • Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021;124(1):13–26. 10.1038/s41416-020-01161-4
  • Ghanei Z, Jamshidizad A, Joupari MD, Shamsara M. Isolation and characterization of breast cancer stem cell-like phenotype by Oct4 promoter-mediated activity. J Cell Physiol. 2020;235(11):7840–8. 10.1002/jcp.29437
  • Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel). 2021;13(17):4287. 10.3390/cancers13174287
  • Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.
  • Morley KL, Ferguson PJ, Koropatnick J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett. 2007;251(1):168–78. 10.1016/j.canlet.2006.11.016
  • Meiyanto E, Hermawan A, Junedi S, Fitriasari A, Susidarti RA. Nobiletin increased cytotoxic activity of doxorubicin on Mcf-7 cells but not on T47d cells. Int J Phytomed. 2011;3:129–37.
  • Baek SH, Kim SM, Nam D, Lee JH, Ahn KS, Choi SH, Kim SH, Shim BS, Chang IM, Ahn KS. Antimetastatic effect of nobiletin through the down-regulation of CXC chemokine receptor type 4 and matrix metallopeptidase-9. Pharm Biol. 2012;50(10):1210–8. 10.3109/13880209.2012.664151
  • Shi MD, Liao YC, Shih YW, Tsai LY. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine. 2013;20(8-9):743–52. 10.1016/j.phymed.2013.02.004
  • Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, Song KD, Park YM, Yang YM. Nobiletin inhibits angiogenesis by regulating Src/FAK/STAT3-mediated signaling through PXN in ER(+) breast cancer cells. Int J Mol Sci. 2017;18(5):935. 10.3390/ijms18050935
  • Du J, Yan X, Mi S, Li Y, Ji H, Hou K, Ma S, Ba Y, Zhou P, Chen L, et al. Identification of prognostic model and biomarkers for cancer stem cell characteristics in glioblastoma by network analysis of multi-omics data and stemness indices. Front Cell Dev Biol. 2020;8:558961. 10.3389/fcell.2020.558961
  • Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, Angraini SM, Muflikhasari HA. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharm J. 2021a;29(1):12–26. 10.1016/j.jsps.2020.12.002
  • Hermawan A, Ikawati M, Khumaira A, Putri H, Jenie RI, Angraini SM, Muflikhasari HA. Bioinformatics and in vitro studies reveal the importance of p53, PPARG and notch signaling pathway in inhibition of breast cancer stem cells by hesperetin. Adv Pharm Bull. 2021b;11(2):351–60. 10.34172/apb.2021.033
  • Brugnoli F, Grassilli S, Al-Qassab Y, Capitani S, Bertagnolo V. CD133 in breast cancer cells: more than a stem cell marker. J Oncol. 2019;2019:7512632. 10.1155/2019/7512632
  • Hermawan A, Putri H, Fatimah N, Prasetio HH. Transcriptomics analysis reveals distinct mechanism of breast cancer stem cells regulation in mammospheres from MCF-7 and T47D cells. Heliyon. 2024;10(2):e24356. 10.1016/j.heliyon.2024.e24356
  • Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, Wagner E, Knyazev P, Roidl A. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J Cancer. 2012;131(12):2808–19. 10.1002/ijc.27595
  • Hermawan A, Khumaira A, Ikawati M, Putri H, Jenie RI, Angraini SM, Muflikhasari HA. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem. 2021c;90:107427. 10.1016/j.compbiolchem.2020.107427
  • Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7. 10.1038/nbt.3519
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. 10.1093/bioinformatics/btp616
  • Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–w137. 10.1093/nar/gkx356
  • Qi X, Huang Q, Wang S, Qiu L, Chen X, Ouyang K, Chen Y. Identification of the shared mechanisms and common biomarkers between Sjögren’s syndrome and atherosclerosis using integrated bioinformatics analysis. Front Med (Lausanne). 2023;10:1185303. 10.3389/fmed.2023.1185303
  • Skolastika S, Hanif N, Ikawati M, Hermawan A. Comprehensive computational analysis of honokiol targets for cell cycle inhibition and immunotherapy in metastatic breast cancer stem cells. Evid Based Complement Alternat Med. 2022;2022:4172531. 10.1155/2022/4172531
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–d613. 10.1093/nar/gky1131
  • Yao Z, Zhang B, Niu G, Yan Z, Tong X, Zou Y, Li Y, Yang M. Neutrophil infiltration characterized by upregulation of S100A8, S100A9, S100A12 and CXCR2 is associated with the co-occurrence of Crohn’s disease and peripheral artery disease. Front Immunol. 2022;13:896645. 10.3389/fimmu.2022.896645
  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. 10.1126/scisignal.2004088
  • Gao J, Lindsay J, Watt S, Bahceci I, Lukasse P, Abeshouse A, Chen H-W, de Bruijn I, Gross B, Li D. 2016. The cBioPortal for cancer genomics and its application in precision oncology. AACR.
  • Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–9. 10.1016/j.csbj.2021.07.014
  • Li C, Tang Z, Zhang W, Ye Z, Liu F. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res. 2021;49(W1):W242–w246. 10.1093/nar/gkab418
  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017b;45(W1):W98–w102. 10.1093/nar/gkx247
  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. 10.1126/science.1260419
  • Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507. 10.1126/science.aan2507
  • St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Pelletier L, Gingras AC. Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission. Mol Cell Proteomics. 2015;14(4):946–60. 10.1074/mcp.M114.046086
  • Naughtin MJ, Sheffield DA, Rahman P, Hughes WE, Gurung R, Stow JL, Nandurkar HH, Dyson JM, Mitchell CA. The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J Cell Sci. 2010;123(Pt 18):3071–83. 10.1242/jcs.060103
  • Sheffield DA, Jepsen MR, Feeney SJ, Bertucci MC, Sriratana A, Naughtin MJ, Dyson JM, Coppel RL, Mitchell CA. The myotubularin MTMR4 regulates phagosomal phosphatidylinositol 3-phosphate turnover and phagocytosis. J Biol Chem. 2019;294(45):16684–97. 10.1074/jbc.RA119.009133
  • Xia X, Liao Y, Guo Z, Li Y, Jiang L, Zhang F, Huang C, Liu Y, Wang X, Liu N, et al. Targeting proteasome-associated deubiquitinases as a novel strategy for the treatment of estrogen receptor-positive breast cancer. Oncogenesis. 2018;7(9):75. 10.1038/s41389-018-0086-y
  • Ding F, Ma JL, Wu XW, Liu ZH. [Influence of UCHL5 on proliferation and apoptosis of SW527 breast cancer cells]. Zhonghua Zhong Liu Za Zhi. 2018;40(12):900–4. 10.3760/cma.j.issn.0253-3766.2018.12.005
  • Fukui S, Nagasaka K, Miyagawa Y, Kikuchi-Koike R, Kawata Y, Kanda R, Ichinose T, Sugihara T, Hiraike H, Wada-Hiraike O, et al. The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-β/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer. Oncotarget. 2019;10(57):5932–48. 10.18632/oncotarget.27219
  • Ahmed ZSO, Li X, Li F, Cheaito HA, Patel K, Mosallam EM, Elbargeesy G, Dou QP. Computational and biochemical studies of isothiocyanates as inhibitors of proteasomal cysteine deubiquitinases in human cancer cells. J Cell Biochem. 2018;119(11):9006–16. 10.1002/jcb.27157
  • Chow P-M, Dong J-R, Chang Y-W, Kuo K-L, Lin W-C, Liu S-H, Huang K-H. The UCHL5 inhibitor b-AP15 overcomes cisplatin resistance via suppression of cancer stemness in urothelial carcinoma. Mol Ther Oncolytics. 2022;26:387–98. 10.1016/j.omto.2022.08.004
  • Kaushal K, Ramakrishna S. Deubiquitinating enzyme-mediated signaling networks in cancer stem cells. Cancers (Basel). 2020;12(11):3253. 10.3390/cancers12113253
  • Arpalahti L, Hagström J, Mustonen H, Lundin M, Haglund C, Holmberg CI. UCHL5 expression associates with improved survival in lymph-node-positive rectal cancer. Tumour Biol. 2017a;39(7):1010428317716078. 10.1177/1010428317716078
  • Arpalahti L, Saukkonen K, Hagström J, Mustonen H, Seppänen H, Haglund C, Holmberg CI. Nuclear ubiquitin C-terminal hydrolase L5 expression associates with increased patient survival in pancreatic ductal adenocarcinoma. Tumour Biol. 2017b;39(6):1010428317710411. 10.1177/1010428317710411
  • Arpalahti L, Laitinen A, Hagström J, Mustonen H, Kokkola A, Böckelman C, Haglund C, Holmberg CI. Positive cytoplasmic UCHL5 tumor expression in gastric cancer is linked to improved prognosis. PLoS One. 2018;13(2):e0193125. 10.1371/journal.pone.0193125
  • Ayad NG. CDKs give Cdc6 a license to drive into S phase. Cell. 2005;122(6):825–7. 10.1016/j.cell.2005.09.001
  • Borlado LR, Méndez J. CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis. 2008;29(2):237–43. 10.1093/carcin/bgm268
  • Chen S, Chen X, Xie G, He Y, Yan D, Zheng D, Li S, Fu X, Li Y, Pang X, et al. Cdc6 contributes to cisplatin-resistance by activation of ATR-Chk1 pathway in bladder cancer cells. Oncotarget. 2016;7(26):40362–76. 10.18632/oncotarget.9616
  • Mahadevappa R, Neves H, Yuen SM, Bai Y, McCrudden CM, Yuen HF, Wen Q, Zhang SD, Kwok HF. The prognostic significance of Cdc6 and Cdt1 in breast cancer. Sci Rep. 2017;7(1):985. 10.1038/s41598-017-00998-9
  • Kim YH, Byun YJ, Kim WT, Jeong P, Yan C, Kang HW, Kim YJ, Lee SC, Moon SK, Choi YH, et al. CDC6 mRNA expression is associated with the aggressiveness of prostate cancer. J Korean Med Sci. 2018;33(47):e303. 10.3346/jkms.2018.33.e303
  • Kong DG, Yao FZ. CDC6 is a possible biomarker for hepatocellular carcinoma. Int J Clin Exp Pathol. 2021;14(7):811–8.
  • Zhao H, Zhou X, Yuan G, Hou Z, Sun H, Zhai N, Huang B, Li X. CDC6 is up-regulated and a poor prognostic signature in glioblastoma multiforme. Clin Transl Oncol. 2021;23(3):565–71. 10.1007/s12094-020-02449-w
  • Yicong Y, Wang Y, Denglong W, Baoying H. Increased CDC6 expression associates with poor prognosis in patients with clear cell renal cell carcinoma. Front Oncol. 2021;11:666418. 10.3389/fonc.2021.666418
  • Jiang W, Yu Y, Liu J, Zhao Q, Wang J, Zhang J, Dang X. Downregulation of Cdc6 inhibits tumorigenesis of osteosarcoma in vivo and in vitro. Biomed Pharmacother. 2019;115:108949. 10.1016/j.biopha.2019.108949
  • Bömer M, Pérez-Salamó I, Florance HV, Salmon D, Dudenhoffer JH, Finch P, Cinar A, Smirnoff N, Harvey A, Devoto A. Jasmonates induce Arabidopsis bioactivities selectively inhibiting the growth of breast cancer cells through CDC6 and mTOR. New Phytol. 2021;229(4):2120–34. 10.1111/nph.17031
  • Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget. 2017a;8(14):23937–54. 10.18632/oncotarget.14893
  • Wang Z, Yu Z, Wang GH, Zhou YM, Deng JP, Feng Y, Chen JQ, Tian L. AURKB promotes the metastasis of gastric cancer, possibly by inducing EMT. Cancer Manag Res. 2020b;12:6947–58. 10.2147/CMAR.S254250
  • Zhang J, Lin X, Wu L, Huang JJ, Jiang WQ, Kipps TJ, Zhang S. Aurora B induces epithelial-mesenchymal transition by stabilizing Snail1 to promote basal-like breast cancer metastasis. Oncogene. 2020;39(12):2550–67. 10.1038/s41388-020-1165-z
  • Zhang Y, Jiang C, Li H, Lv F, Li X, Qian X, Fu L, Xu B, Guo X. Elevated Aurora B expression contributes to chemoresistance and poor prognosis in breast cancer. Int J Clin Exp Pathol. 2015;8:751–7.
  • Liu M, Li Y, Zhang C, Zhang Q. Role of aurora kinase B in regulating resistance to paclitaxel in breast cancer cells. Hum Cell. 2022;35(2):678–93. 10.1007/s13577-022-00675-8
  • Shin SY, Lee Y, Kim BS, Lee J, Ahn S, Koh D, Lim Y, Lee YH. Inhibitory effect of synthetic flavone derivatives on pan-aurora kinases: induction of G2/M cell-cycle arrest and apoptosis in HCT116 human colon cancer cells. Int J Mol Sci. 2018;19(12):4086. 10.3390/ijms19124086
  • Romagnolo AP, Romagnolo DF, Selmin OI. BRCA1 as target for breast cancer prevention and therapy. Anticancer Agents Med Chem. 2015;15(1):4–14. 10.2174/1871520614666141020153543
  • Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EY-HP. Cancer stem cells contribute to cisplatin resistance in Brca1/p53–mediated mouse mammary tumors. Cancer Res. 2008;68(9):3243–50. 10.1158/0008-5472.CAN-07-5480
  • Kim H, Lin Q, Yun Z. BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors. Sci Rep. 2019;9(1):9702. 10.1038/s41598-019-46210-y
  • You Y, Bi FF, Jiang Y, Xu YT, An YY, Li D, Yang Q. BRCA1 affects the resistance and stemness of SKOV3-derived ovarian cancer stem cells by regulating autophagy. Cancer Med. 2019;8(2):656–68. 10.1002/cam4.1975
  • Nathansen J, Meyer F, Müller L, Schmitz M, Borgmann K, Dubrovska A. Beyond the double-strand breaks: the role of DNA repair proteins in cancer stem-cell regulation. Cancers (Basel). 2021;13(19):4818. 10.3390/cancers13194818
  • Nielsen CF, Zhang T, Barisic M, Kalitsis P, Hudson DF. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci USA. 2020;117(22):12131–42. 10.1073/pnas.2001760117
  • Romero A, Martín M, Cheang MC, López García-Asenjo JA, Oliva B, He X, de la Hoya M, García Sáenz J, Arroyo Fernández M, Díaz Rubio E, et al. Assessment of topoisomerase II α status in breast cancer by quantitative PCR, gene expression microarrays, immunohistochemistry, and fluorescence in situ hybridization. Am J Pathol. 2011;178(4):1453–60. 10.1016/j.ajpath.2010.12.042
  • Zhong W, Yang Y, Zhang A, Lin W, Liang G, Ling Y, Zhong J, Yong J, Liu Z, Tian Z, et al. Prognostic and predictive value of the combination of TOP2A and HER2 in node-negative tumors 2 cm or smaller (T1N0) breast cancer. Breast Cancer. 2020;27(6):1147–57. 10.1007/s12282-020-01142-8
  • Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR, Hannon GJ, Lowe SW, Hemann MT. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci USA. 2008;105(26):9053–8. 10.1073/pnas.0803513105
  • Wang B, Shen Y, Zou Y, Qi Z, Huang G, Xia S, Gao R, Li F, Huang Z. TOP2A promotes cell migration, invasion and epithelial-mesenchymal transition in cervical cancer via activating the PI3K/AKT signaling. Cancer Manag Res. 2020a;12:3807–14. 10.2147/CMAR.S240577
  • Li X, Liu Y, Chen W, Fang Y, Xu H, Zhu HH, Chu M, Li W, Zhuang G, Gao WQ. TOP2Ahigh is the phenotype of recurrence and metastasis whereas TOP2Aneg cells represent cancer stem cells in prostate cancer. Oncotarget. 2014;5(19):9498–513. 10.18632/oncotarget.2411
  • Maugeri-Saccà M, Bartucci M, De Maria R. Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treat Rev. 2013;39(5):525–33. 10.1016/j.ctrv.2012.10.007
  • Abdel-Fatah TM, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, et al. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol Oncol. 2015;9(3):569–85. 10.1016/j.molonc.2014.10.013
  • Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M, Signore M, Navarra S, Lotti F, Biffoni M, Pilozzi E, et al. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ. 2012;19(5):768–78. 10.1038/cdd.2011.170
  • Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, Yuan J, Wang M, Chen D, Sun Y, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014b;16(9):864–75. 10.1038/ncb3013
  • Manic G, Signore M, Sistigu A, Russo G, Corradi F, Siteni S, Musella M, Vitale S, De Angelis ML, Pallocca M, et al. CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut. 2018;67(5):903–17. 10.1136/gutjnl-2016-312623
  • Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, Li T, Cai J, Wang Z. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11(4):1795–813. 10.7150/thno.48101
  • Keijzers G, Bakula D, Petr MA, Madsen NGK, Teklu A, Mkrtchyan G, Osborne B, Scheibye-Knudsen M. Human exonuclease 1 (EXO1) regulatory functions in DNA replication with putative roles in cancer. Int J Mol Sci. 2018;20(1):74. 10.3390/ijms20010074
  • Muthuswami M, Ramesh V, Banerjee S, Viveka Thangaraj S, Periasamy J, Bhaskar Rao D, Barnabas GD, Raghavan S, Ganesan K. Breast tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition. PLoS One. 2013;8(10):e77553. 10.1371/journal.pone.0077553
  • Liu J, Zhang J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. Ann Transl Med. 2021;9(2):135–10.21037/atm-20-7922
  • Pei J, Wang Y, Li Y. Identification of key genes controlling breast cancer stem cell characteristics via stemness indices analysis. J Transl Med. 2020;18(1):74. 10.1186/s12967-020-02260-9
  • Zhang J, Yang R, Zhou D, Rudolph KL, Meng A, Ju Z. Exonuclease 1 is essential for maintaining genomic stability and the proliferative capacity of neural but not hematopoietic stem cells. Stem Cell Res. 2014a;12(1):250–9. 10.1016/j.scr.2013.11.001
  • Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466–74. 10.1177/1947601911408889
  • Ghatak D, Das Ghosh D, Roychoudhury S. Cancer stemness: p53 at the Wheel. Front Oncol. 2020;10:604124. 10.3389/fonc.2020.604124
  • Wang QE. DNA damage responses in cancer stem cells: implications for cancer therapeutic strategies. World J Biol Chem. 2015;6(3):57–64. 10.4331/wjbc.v6.i3.57
  • Caglar HO, Biray Avci C. Alterations of cell cycle genes in cancer: unmasking the role of cancer stem cells. Mol Biol Rep. 2020;47(4):3065–76. 10.1007/s11033-020-05341-6
  • Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA. The role of nitric oxide in cancer: master regulator or not? Int J Mol Sci. 2020;21(24):9393. 10.3390/ijms21249393
  • Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. 10.1038/nrc.2016.138
  • Clay-Farrace L, Pelizon C, Santamaria D, Pines J, Laskey RA. Human replication protein Cdc6 prevents mitosis through a checkpoint mechanism that implicates Chk1. Embo J. 2003;22(3):704–12. 10.1093/emboj/cdg046
  • Sankhe K, Prabhu A, Khan T. Design strategies, SAR, and mechanistic insight of Aurora kinase inhibitors in cancer. Chem Biol Drug Des. 2021;98(1):73–93. 10.1111/cbdd.13850
  • Sasanuma H, Tsuda M, Morimoto S, Saha LK, Rahman MM, Kiyooka Y, Fujiike H, Cherniack AD, Itou J, Callen Moreu E, et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes. Proc Natl Acad Sci USA. 2018;115(45):E10642–E10651. 10.1073/pnas.1803177115
  • Borah NA, Reddy MM. Aurora kinase B inhibition: a potential therapeutic strategy for cancer. Molecules. 2021;26(7):1981. 10.3390/molecules26071981
  • Tomimatsu N,Mukherjee B,Harris JL,Boffo FL,Hardebeck MC,Potts PR,Khanna KK,Burma S. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem. 2017;292(26):10779–90. 10.1074/jbc.M116.772475. 28515316
  • Jiang ZY, Hong J, Zhang JH, Wang XF, Ma YS, Xiong ZX, Sun HR, Cheng C, Xie BZ, Liu JB, et al. Treatment with b-AP15 to inhibit UCHL5 and USP14 deubiquitinating activity and enhance p27 and cyclin E1 for tumors with p53 deficiency. Technol Cancer Res Treat. 2022;21:15330338221119745. 10.1177/15330338221119745

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.