166
Views
18
CrossRef citations to date
0
Altmetric
BASIC SCIENCE

Temporal Frequency and the Magnocellular and Parvocellular Systems

&
Pages 43-48 | Accepted 02 Jul 2007, Published online: 08 Jul 2009

REFERENCES

  • Schiller P H, Logothetis N K. The color-opponent and broad-band channels of the primate visual system. Trend Neurosci 1990; 13: 392–398
  • Shapley R, Perry V H. Cat and monkey retinal ganglion cells and their visual functional roles. Trend Neurosci 1986; 9: 229–235
  • Merigan W H, Maunsell J H. How parallel are the primate visual pathways?. Annl Rev Neurosci 1993; 16: 369–402
  • Hendry S H, Reid R C. The koniocellular pathway in primate vision. Ann Rev Neurosci 2000; 23: 127–153
  • Chapman C, Hoag R, Giaschi D. The effect of disrupting the human magnocellular pathway on global motion perception. Vis Res 2004; 44: 2551–2557
  • Johansson B, Jakobson P. Fourier-analyzed steady-state VEPs in pre-school children with and without normal binocularity. Doc Ophthalmol 2006; 112: 12–22
  • Kinsey K, Hansen P C, Chase C H. Dorsal stream associated with orthographic and phonological processing. Neuroreport 2006; 17: 335–339
  • Livingstone M S, Rosen G D, Drislane F W, Galaburda A M. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci USA 1991; 88: 7943–7947
  • McKeefry D J, Russell M H, Murray I J, Kulikowski J J. Amplitude and phase variations of harmonic components in human achromatic and chromatic visual evoked potentials. Vis Neurosci 1996; 13: 639–653
  • Vaegan Hollows F C. Visual-evoked response, pattern electroretinogram, and psychophysical magnocellular thresholds in glaucoma, optic atrophy, and dyslexia. Optom Vis Sci 2006; 83: 486–498
  • Odom J V, Bach M, Barber C, Brigell M, Marmor M F, Tormene A P, Holder G E. Vaegan. Visual Evoked Potentials Standard (2004). Doc Ophthalmol 2004; 108: 115–123
  • Hawken M J, Shapely R M, Grosof D H. Temporal-frequency selectivity in monkey visual cortex. Vis Neurosci 1996; 13: 477–492
  • Spear P D, Moore R J, Kim C BY, Xue J-T, Tumosa N. Effect of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young and old Rhesus monkeys. J Neurophysiol 1994; 72: 402–420
  • Levitt J B, Schumer R A, Sherman S M, Spear P D, Movshon J A. Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. J Neurophysiol 2001; 85: 2111–2129
  • Movshon J A, Kiorpes L, Hawken M J, Cavanaugh J R. Functional maturation of the macaque's lateral geniculate nucleus. J Neurosci 2005; 25: 2712–2722
  • Hicks T P, Lee B B, Vidyasagar T R. The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. J Physiol 1983; 337: 183–200
  • Livingstone M S, Hubel D H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 1987; 7: 3416–3468
  • Shapley R, Kaplan E, Soodak R. Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 1981; 292: 543–545
  • Merigan W H, Maunsell J H. Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 1990; 5: 347–352
  • Merigan W H, Katz L M, Maunsell J H. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci 1991; 11: 994–1001
  • Merigan W H, Byrne C E, Maunsell J H. Does primate motion perception depend on the magnocellular pathway?. J Neurosci 1991; 11: 3422–3429
  • Schiller P H, Logothetis N K, Charles E R. Functions of the colour-opponent and broad-band channels of the visual system. Nature 1990; 343: 68–70
  • Schiller P H, Logothetis N K, Charles E R. Role of color-opponent and broad-band channels in vision. Vis Neurosci 1990; 5: 321–346
  • Tolhurst D J. Reaction times in the detection of gratings by human observers: A probabilistic mechanism. Vis Res 1975; 15: 1143–1149
  • Legge G E. Sustained and transient mechanisms in human vision: Temporal and spatial properties. Vis Res 1978; 18: 69–81
  • Skottun B C. The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vis Res 2000; 40: 111–127
  • Slaghuis W L, Ryan J F. Directional motion contrast sensitivity in developmental dyslexia. Vis Res 2006; 46: 3291–3303
  • Kaplan E, Shapley R M. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 1986; 83: 2755–2757
  • Peters A, Payne B R, Budd J. A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb Cortex 1994; 4: 215–229
  • Ahmad A, Spear P D. Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons. J Comp Neurol 1993; 334: 631–643
  • Gross-Glenn K, Skottun B C, Glenn W, Kushch A, Lingua R, Dunbar M, Jallad B, Lubs H A, Levin B, Rabin M. Contrast sensitivity in dyslexia. Vis Neurosci 1995; 12: 153–163
  • Burbeck C A, Kelly D H. Contrast gain measurements and the transient/sustained. J Opt Soc Am 1981; 71: 1335–1342
  • Enroth-Cugell C, Robson J G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 1966; 187: 517–552

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.