12
Views
0
CrossRef citations to date
0
Altmetric
Review

The Role of Optical Coherence Tomography Angiography in the Evaluation of Chiasmal and Retrochiasmal Compression

ORCID Icon
Received 29 Jan 2024, Accepted 30 Mar 2024, Published online: 19 Apr 2024

References

  • Dinkin M. Trans-synaptic retrograde degeneration in the human visual system: slow, silent, and real. Curr Neurol Neurosci Rep. 2017;17:16. doi:10.1007/s11910-017-0725-2.
  • Banc A, Biousse V, Newman NJ, Kedar S. Ocular optical coherence tomography in the evaluation of sellar and parasellar masses: a review. Neurosurgery. 2023;92(1):42–67. doi:10.1227/neu.0000000000002186.
  • Minakaran N, Carvalho ER, Petzold A, Wong SH. Optical coherence tomography (OCT) in neuro-ophthalmology. Eye. 2021;35:17–32. doi:10.1038/s41433-020-01288-x.
  • Tan PEZ, Yu PK, Balaratnasingam C, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina. Invest Ophthalmol Vis Sci. 2012;53:5728–5736. doi:10.1167/iovs.12-10017.
  • Higashiyama T, Ichiyama Y, Muraki S, Nishida Y, Ohji M. Optical coherence tomography angiography of retinal perfusion in chiasmal compression. Ophthalmic Surg Lasers Imaging Retina. 2016;47:724–729. doi:10.3928/23258160-20160808-05.
  • Jaumandreu L, Sanchez-Gutierrez V, Munoz-Negrete FJ, de Juan V, Rebolleda G. Reduced peripapillary and macular vessel density in unilateral postgeniculate lesions with retrograde transsynaptic degeneration. J Neuro-Ophthalmol. 2019;39:462–469. doi:10.1097/WNO.0000000000000794.
  • Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. doi:10.1016/j.preteyeres.2017.07.002.
  • Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. doi:10.1038/srep42201.
  • Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi:10.1016/j.preteyeres.2017.11.003.
  • Kim KH, Kim US. Optical coherence tomography angiography in pituitary tumor. Neurology. 2017;89:1307–1308. doi:10.1212/WNL.0000000000004397.
  • Parrozzani R, Leonardi F, Frizziero L, et al. Retinal vascular and neural remodeling secondary to optic nerve axonal degeneration: a study using OCT angiography. Ophthalmol Retina. 2018;2:827–835. doi:10.1016/j.oret.2017.12.001.
  • Suzuki ACF, Zacharias LC, Preti RC, Cunha LP, Monteiro MLR. Circumpapillary and macular vessel density assessment by optical coherence tomography angiography in eyes with temporal hemianopia from chiasmal compression. Correlation with retinal neural and visual field loss. Eye. 2020;34:695–703. doi:10.1038/s41433-019-0564-2.
  • Dallorto L, Lavia C, Jeannerot AL, et al. Retinal microvasculature in pituitary adenoma patients: is optical coherence tomography angiography useful? Acta Ophthalmol. 2020;98:e585–e592. doi:10.1111/aos.14322.
  • Lee GI, Park KA, Oh SY, Kong DS. Analysis of optic chiasmal compression caused by brain tumors using optical coherence tomography angiography. Sci Rep. 2020;10(1):2088. doi:10.1038/s41598-020-59158-1.
  • Lee GI, Park KA, Oh SY, Kong DS. Parafoveal and peripapillary perfusion predict visual field recovery in chiasmal compression due to pituitary tumors. J Clin Med. 2020;9(3):697. doi:10.3390/jcm9030697.
  • Cennamo G, Solari D, Montorio D, et al. Early vascular modifications after endoscopic endonasal pituitary surgery: the role of OCT-angiography. PLOS ONE. 2020;15(10):e0241295. doi:10.1371/journal.pone.0241295.
  • Lee GI, Park KA, Oh SY, Kong DS. Changes in parafoveal and peripapillary perfusion after decompression surgery in chiasmal compression due to pituitary tumors. Sci Rep. 2021;11(1):3464. doi:10.1038/s41598-021-82151-1.
  • Wang G, Gao J, Yu W, Li Y, Liao R. Changes of peripapillary region perfusion in patients with chiasmal compression caused by sellar region mass. J Ophthalmol. 2021;2021:5588077. doi:10.1155/2021/5588077.
  • Ben Ghezala I, Haddad D, Blanc J, et al. Peripapillary microvascularization analysis using swept-source optical coherence tomography angiography in optic chiasmal compression. J Ophthalmol. 2021;2021:1–9. doi:10.1155/2021/5531959.
  • Cennamo G, Solari D, Montorio D, et al. The role of OCT-angiography in predicting anatomical and functional recovery after endoscopic endonasal surgery: a 1-year longitudinal study. PLOS ONE. 2021;16(12):e0260029. doi:10.1371/journal.pone.0260029.
  • Wang X, Chou Y, Zhu H, et al. Retinal microvascular alterations detected by optical coherence tomography angiography in nonfunctioning pituitary adenomas. Transl Vis Sci Technol. 2022;11(1):5. doi:10.1167/tvst.11.1.5.
  • Lee GI, Kim Y, Park KA, Oh SY, Kong DS, Hong SD. Parafoveal and peripapillary vessel density in pediatric and juvenile craniopharyngioma patients. Sci Rep. 2022;12:5355. doi:10.1038/s41598-022-09391-7.
  • Tang Y, Jia W, Xue Z, et al. Prognostic value of radial peripapillary capillary density for visual field outcomes in pituitary adenoma: a case-control study. J Clin Neurosci. 2022;100:113–119. doi:10.1016/j.jocn.2022.04.012.
  • Tang Y, Liang X, Xu J, Wang K, Jia W. The value of optical coherence tomography angiography in pituitary adenomas. J Integr Neurosci. 2022;21(5):142. doi:10.31083/j.jin2105142.
  • Wei P, Falardeau J, Chen A, et al. Optical coherence tomographic angiography detects retinal vascular changes associated with pituitary adenoma. Am J Ophthalmol Case Rep. 2022;28:101711. doi:10.1016/j.ajoc.2022.101711.
  • Chou Y, Wang X, Wang Y, et al. Early retinal microcirculation in nonfunctioning pituitary adenomas without visual field defects using optical coherence tomography angiography. J Neuroophthalmol. 2022;42(4):509–517. doi:10.1097/WNO.0000000000001562.
  • Ergen A, Kaya Ergen S, Gunduz B, et al. Retinal vascular and structural recovery analysis by optical coherence tomography angiography after endoscopic decompression in sellar/parasellar tumors. Sci Rep. 2023;13(1):14371. doi:10.1038/s41598-023-40956-2.
  • Chen Y, Li X, Song X, Cong L, Zhang Y. Microvascular changes in pituitary adenoma correlate with structural measurements and visual field loss. Neuropsychiatr Dis Treat. 2023;19:2745–2754. doi:10.2147/NDT.S425454.
  • Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 WHO classification of pituitary tumors. Endocr Pathol. 2022;33(1):6–26. doi:10.1007/s12022-022-09703-7.
  • Hayreh SS. The blood supply of the optic nerve head and the evaluation of it - myth and reality. Prog Retin Eye Res. 2001;20(5):563–593. doi:10.1016/s1350-9462(01)00004-0.
  • Rolle T, Dallorto L, Tavassoli M, Nuzzi R. Diagnostic ability and discriminant values of OCT-Angiography parameters in early glaucoma diagnosis. Ophthalmic Res. 2019;61(3):143–152. doi:10.1159/000489457.
  • Chen CL, Bojikian KD, Wen JC, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol. 2017;135(5):461–468. doi:10.1001/jamaophthalmol.2017.0261.
  • Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018;125(4):578–587. doi:10.1016/j.ophtha.2017.10.029.
  • Fard MA, Ghahvechian H, Sahrayan A, Subramanian PS. Early macular vessel density loss in acute ischemic optic neuropathy compared to papilledema: implications for pathogenesis. Transl Vis Sci Technol. 2018;7(5):10. doi:10.1167/tvst.7.5.10.
  • Yum HR, Park SH, Park HYL, Shin SY, Narayanan R. Macular ganglion cell analysis determined by cirrus HD optical coherence tomography for early detecting chiasmal compression. PLOS ONE. 2016;11(4):e0153064. doi:10.1371/journal.pone.0153064.
  • Tieger MG, Hedges TR 3rd, Ho J, et al. Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol. 2017;37(1):7–12. doi:10.1097/WNO.0000000000000424.
  • Blanch RJ, Micieli JA, Oyesiku NM, Newman NJ, Biousse V. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary. 2018;21(5):515–523. doi:10.1007/s11102-018-0906-2.
  • Micieli JA, Newman NJ, Biousse V. Retinal imaging of an optic tract lesion: OCT angiography of structural and functional defects. Ophthalmology. 2018;125(5):756. doi:10.1016/j.ophtha.2018.01.027.
  • Pellegrini F, Interlandi E, Pichi F, Lee AG. Retrogeniculate lesion of the visual pathways: retinal optical coherence tomography angiography shows evidence of transsynaptic retrograde degeneration. Neuroophthalmology. 2020;44(2):114–117. doi:10.1080/01658107.2019.1617748.
  • Hepschke JL, Laws E, Bin Saliman NH, et al. Modifications in macular perfusion and neuronal loss after acute traumatic brain injury. Invest Ophthalmol Vis Sci. 2023;64(4):35. doi:10.1167/iovs.64.4.35.
  • Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S. Optical coherence tomography angiography in neurodegenerative diseases: a review. Eye Brain. 2020;12:73–87. doi:10.2147/EB.S193026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.