553
Views
45
CrossRef citations to date
0
Altmetric
Research Article

The Irre Cell Recognition Module (IRM) Proteins

, , , , &
Pages 48-67 | Received 13 Aug 2008, Published online: 11 Jul 2009

References

  • Apitz H., Kambacheld M., Straube A., Höhne M., Ramos G. P. R., Fischbach K. F. Identification of regulatory modules mediating specific expression of the roughest gene in Drosophila melanogaster. Dev Genes Evol 2004; 214: 453–459
  • Apitz H., Strünkelnberg M., de Couet H. G., Fischbach K. F. Single-minded, Dmef2, Pointed, and Su(H) act on identified regulatory sequences of the roughest gene in Drosophila melanogaster. Dev Genes Evol 2005; 215: 460–469
  • Artero R. D., Castanon I., Baylies M. K. The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 2001; 128: 4251–4264
  • Balagopalan L., Chen M. H., Geisbrecht E. R., Abmayr S. M. The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk. Mol Cell Biol 2006; 26: 9442–9455
  • Bao S., Cagan R. Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev Cell 2005; 8: 925–935
  • Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 1991; 19(Suppl)2241–2245
  • Bazigou E., Apitz H., Johansson J., Loren C. E., Hirst E. M., Chen P. L., et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 2007; 128: 961–975
  • Beltcheva O., Kontusaari S., Fetissov S., Putaala H., Kilpelainen P., Hokfelt T., et al. Alternatively used promoters and distinct elements direct tissue-specific expression of nephrin. J Am Soc Nephrol 2003; 14: 352–358
  • Boschert U., Ramos R. G. P., Tix S., Technau G. M., Fischbach K. F. Genetic and developmental analysis of irreC, a genetic function required for optic chiasm formation in Drosophila. J Neurogen 1990; 6: 153–171
  • Bour B. A., Chakravarti M., West J. M., Abmayr S. M. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 2000; 14: 1498–1511
  • Chen E. H., Olson E. N. Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell 2001; 1: 705–715
  • Chen E. H., Olson E. N. Towards a molecular pathway for myoblast fusion in Drosophila. Trends Cell Biol 2004; 14: 452–460
  • Clamp M., Cuff J., Searle S. M., Barton G. J. The Jalview Java alignment editor. Bioinformatics 2004; 20: 426–427
  • Connolly J. B., Roberts I. J., Armstrong J. D., Kaiser K., Forte M., Tully T., et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 1996; 274: 2104–2107
  • Delaney S.J., Hayward D. C., Barleben F., Fischbach K. F., Gabor Miklos G. L. Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc Natl Acad Sci USA 1991; 88: 7214–7218
  • Ding M., Chao D., Wang G., Shen K. Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science (New York) 2007; 317: 947–951
  • Doberstein S. K., Fetter R. D., Mehta A. Y., Goodman C. S. Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol 1997; 136: 1249–1261
  • Dushay M. S., Rosbash M., Hall J. C. The disconnected visual system mutations in Drosophila melanogaster drastically disrupt circadian rhythms. J Biol Rhythms 1989; 4: 1–27
  • Dworak H. A., Charles M. A., Pellerano L. B., Sink H. Characterization of Drosophila hibris, a gene related to human nephrin. Development 2001; 128: 4265–4276
  • Fischbach K. F., Dittrich A. P. M. The optic lobe of Drosophila melanogaster. Part I, a Golgi analysis of wild-type structure. Cell Tissue Res 1989; 258: 441–475
  • Fischbach K. F., Heisenberg M. Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. Proc Natl Acad Sci USA 1981; 78: 1105–1109
  • Fischbach K. F., Hiesinger P. R. Optic lobe development in brain development in Drosophila. Brain Development in Drosophila melanogaster, G. Technau. Landes Biosciences and Springer Science+Business Media. 2008; 115–136
  • Galletta B. J., Chakravarti M., Banerjee R., Abmayr S. M. SNS, adhesive properties, localization requirements, and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev 2004; 121: 1455–1468
  • Gerke, P., Benzing, T., Höhne, M., Kispert, A., Frotscher, M., Walz, G, et al. 2006. Neuronal expression and interaction with the synaptic protein CASK suggest a role for Neph1 and Neph2 in synaptogenesis. J Comp Neurol, 498, 466–475.
  • Gerke P., Huber T. B., Sellin L., Benzing T., Walz G. Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and NEPH1. J Am Soc Nephrol 2003; 14: 918–926
  • Gerke P., Sellin L., Kretz O., Petraschka D., Zentgraf H., Benzing T., et al. NEPH2 is located at the glomerular slit diaphragm, interacts with nephrin, and is cleaved from podocytes by metalloproteinases. J Am Soc Nephrol 2005; 16: 1693–1702
  • Gorski S. M., Brachmann C. B., Tanenbaum S. B., Cagan R. L. Delta and notch promote correct localization of irreC-rst. Cell Death Different 2000; 7: 1011–1013
  • Grzeschik N. A., Knust E. IrreC/Rst-mediated cell sorting during Drosophila pupal eye development depends on proper localisation of DE-cadherin. Development 2005; 132: 2035–2045
  • Hanesch U., Fischbach K. F., Heisenberg M. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 1989; 257: 343–366
  • Hartenstein V., Posakony J. W. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 1989; 107: 389–405
  • Heisenberg M., Boehl K. Isolation of anatomical brain mutants of Drosophila by histological means. Z Naturforsch 1979; 34: 143–147
  • Heisenberg M., Borst A., Wagner S., Byers D. Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogen 1985; 2: 1–30
  • Hiesinger P. R., Reiter C., Schau H., Fischbach K. F. Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development. J Neurosci 1999; 19: 7548–7556
  • Hofmann K., Stoffel W. TMbase—a database of membrane-spanning proteins segments. Biol Chem Hoppe-Seyler 1993; 374: 166
  • Huber T. B., Benzing T. The slit diaphragm, a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 2005; 14: 211–216
  • Huber T. B., Hartleben B., Kim J., Schmidts M., Schermer B., Keil A., et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol 2003a; 23: 4917–4928
  • Huber T. B., Schmidts M., Gerke P., Schermer B., Zahn A., Hartleben B., et al. The carboxyl terminus of NEPH family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem 2003b; 278: 13417–13421
  • Joesch M., Plett J., Borst A., Reiff D. F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 2008; 18: 368–374
  • Kestilä M., Lenkkeri U., Männikkö M., Lamerdin J., McCready P., Putaala H., et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1998; 1: 575–582
  • Kesper D. A., Stute C., Buttgereit D., Kreiskother N., Vishnu S., Fischbach K. F., et al. Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Dev Dyn 2007; 236: 404–415
  • Kim S., Shilagardi K., Zhang S., Hong S., Sens K., Bo J., et al. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell 2007; 12: 571–586
  • Kocherlakota K. S., Wu J., McDermott J., Abmayr S. M. Analysis of the cell adhesion molecule sticks-and-stones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated tyrosines that direct myoblast fusion in Drosophila melanogaster. Genetics 2008; 178: 1371–1383
  • Kreisköther N., Reichert N., Buttgereit D., Hertenstein A., Fischbach K. F., Renkawitz-Pohl R. Drosophila Rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin, and Zormin in the terminal Z-discs. J Muscle Res Cell Motil 2006; 27: 93–106
  • Laissue P. P., Reiter C., Hiesinger P. R., Halter S., Fischbach K. F., Stocker R. F. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 1999; 405: 543–552
  • Lee T., Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 2001; 24: 251–254
  • Lewis J., Davies A. Planar cell polarity in the inner ear: how do hair cells acquire their oriented structure?. J Neurobiol 2002; 53: 190–201
  • Liu G., Kaw B., Kurfis J., Rahmanuddin S., Kanwar Y. S., Chugh S. S. Neph1 and Nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J Clin Invest 2003; 112: 209–221
  • Liu X. L., Kilpeläinen P., Hellman U., Sun Y., Wartiovaara J., Morgunova E., et al. Characterization of the interactions of the nephrin intracellular domain. FEBS J 2005; 272: 228–243
  • Massarwa R., Carmon S., Shilo B. Z., Schejter E. D. WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell 2007; 12: 557–569
  • Mast J. D., Prakash S., Chen P. L., Clandinin T. R. The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. Semin Cell Dev Biol 2006; 17: 42–49
  • Meinertzhagen I. A., Hanson T. E. The development of the optic lobe. The Development of Drosophila melanogaster II, M. Bate, A. Martinez-Arias. Cold Spring Harbor Press. 1993; 1363–1491
  • Meinertzhagen I. A., O'Neil S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 1991; 305: 232–263
  • Meinertzhagen I. A., Piper S. T., Sun X. J., Frohlich A. Neurite morphogenesis of identified visual interneurons and its relationship to photoreceptor synaptogenesis in the flies, Musca domestica and Drosophila melanogaster. Eur J Neurosci 2000; 12: 1342–1356
  • Menon S. D., Chia W. Actin on multiple fronts to generate a muscle fiber. Dev Cell 2007; 12: 479–481
  • Menon S. D., Osman Z., Chenchill K., Chia W. A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila. J Cell Biol 2005; 169: 909–920
  • Millard S. S., Flanagan J. J., Pappu K. S., Wu W., Zipursky S. L. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 2007; 447: 720–724
  • Morante J., Desplan C. The color-vision pathway in the medulla of Drosophila. Curr Biol 2008; 18: 553–564
  • Morikawa Y., Komori T., Hisaoka T., Ueno H., Kitamura T., Senba E. Expression of mKirre in the developing sensory pathways: its close apposition to nephrin-expressing cells. Neuroscience 2007; 150: 880–886
  • Mundel P., Heid H. W., Mundel T. M., Krüger M., Reiser J., Kriz W. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 1997; 139: 193–204
  • Nolan K. M., Barrett K., Lu Y., Hu K. Q., Vincent S., Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac-signaling pathway utilized for multiple developmental processes. Genes Dev 1998; 12: 3337–3342
  • Otsuna H., Ito K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. lobula-specific pathways. J Comp Neurol 2006; 497: 928–958
  • Patel M. R., Lehrman E. K., Poon V. Y., Grump J. G., Zhen M., Bargmann C. I., et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 2006; 9: 1488–1498
  • Pütz M., Kesper D. A., Buttgereit D., Renkawitz-Pohl R. In Drosophila melanogaster, the Rolling pebbles isoform 6 (Rols6) is essential for proper Malpighian tubule morphology. Mech Dev 2005; 122: 1206–1217
  • Raghu S. V., Joesch M., Borst A., Reiff D. F. Synaptic organization of lobula plate tangential cells in Drosophila: gamma-aminobutyric acid receptors and chemical release sites. J Comp Neurol 2007; 502: 598–610
  • Ramos R. G. P., Igloi G. L., Lichte B., Baumann U., Maier D., Schneider T., et al. The irregular chiasm C-roughest locus of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein. Genes Dev 1993; 7: 2533–2547
  • Rau A., Buttgereit D., Holz A., Fetter R., Doberstein S. K., Paululat A., et al. rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 2001; 128: 5061–5073
  • Reddy G. V., Reiter C., Shanbhag S., Fischbach K. F., Rodrigues V. Irregular chiasm C–roughest, a member of the immunoglobulin superfamily, affects sense-organ spacing on the Drosophila antenna by influencing the positioning of founder cells on the disc ectoderm. Dev Genes Evol 1999; 209: 581–591
  • Reiter, C., Nie, Z., & Fischbach, K. F. 2000. Flybrain.org (Accession no. AA00075).
  • Reiter C., Schimansky T., Nie Z., Fischbach K. F. Reorganization of membrane contacts prior to apoptosis in the Drosophila retina. The role of the IrreC/Rst protein. Development 1996; 122: 1931–1940
  • Renaud O., Simpson P. scabrous modifies epithelial cell adhesion and extends the range of lateral signalling during development of the spaced bristle pattern in Drosophila. Dev Biol 2001; 240: 361–376
  • Renn S. C. P., Armstrong J. D., Yang M., Wang Z., An X., Kaiser K., et al. Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 1999; 41: 189–207
  • Rister J., Pauls D., Schnell B., Ting C. Y., Lee C. H., Sinakevitch I., et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 2007; 56: 155–170
  • Rose B. D., Post T. W. Clinical Physiology of Acid-Base and Electrolyte Disorders. McGraw-Hill Professional. 2001
  • Ruiz-Gomez M., Coutts N., Price A., Taylor M. V., Bate M. Drosophila dumbfounded, a myoblast attractant essential for fusion. Cell 2000; 102: 189–198
  • Schneider T., Reiter C., Eule E., Bader B., Lichte B., Nie Z., et al. Neural recognition in Drosophila, restricted expression of irreC/rst is required for normal axonal projections of columnar neurons. Neuron 1995; 15: 259–271
  • Sellin L., Huber T. B., Gerke P., Quack I., Pavenstadt H., Walz G. NEPH1 defines a novel family of podocin interacting proteins. FASEB J 2002; 17: 115–117
  • Serra-Pages C., Medley Q. G., Tang M., Hart A., Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 1998; 273: 15611–15620
  • Shen K., Bargmann C. I. The immunoglobulin superfamily protein Syg-1 determines the location of specific synapses in C. elegans. Cell 2003; 112: 619–630
  • Shen K., Fetter R. D., Bargmann C. I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, Syg-1. Cell 2004; 116: 869–881
  • Srinivas B. P., Woo J., Leong W. Y., Roy S. A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet 2007; 39: 781–786
  • Steller H., Fischbach K. F., Rubin G. M. Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 1987; 50: 1139–1153
  • Stocker R. F., Lienhard M. C., Borst A., Fischbach K. F. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 1990; 262: 9–34
  • Strünkelnberg M., Bonengel B., Moda L. M., Hertenstein A., de Couet H. G., Ramos R. G. P., et al. rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 2001; 128: 4229–4239
  • Takemura S. Y., Lu Z., Meinertzhagen I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 2008; 509: 493–513
  • Tamura S., Morikawa Y., Hisaoka T., Ueno H., Kitamura T., Senba E. Expression of mKirre, a mammalian homolog of Drosophila kirre, in the developing and adult mouse brain. Neuroscience 2005; 133: 615–624
  • Ting C. Y., Lee C. H. Visual circuit development in Drosophila. Curr Opin Neurobiol 2007; 17: 65–72
  • Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680
  • Träger U., Wagner R., Bausenwein B., Homberg U. A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J Comp Neurol 2008; 506: 288–300
  • Ueno H., Sakita-Ishikawa M., Morikawa Y., Nakano T., Kitamura T., Saito M. A stromal cell–derived membrane protein that supports hematopoietic stem cells. Nat Immunol 2003; 4: 457–463
  • Vishnu S., Hertenstein A., Betschinger J., Knoblich J. A., de Couet H. G., Fischbach K. F. The adaptor protein X11Lα/Dmint1 interacts with the PDZ-binding domain of the cell recognition protein Rst in Drosophila. Dev Biol 2006; 289: 296–307
  • Wolff T., Ready D. F. Cell death in normal and rough eye mutants of Drosophila. Development 1991; 113: 825–839

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.