515
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies

, , &
Pages 231-249 | Received 10 Aug 2017, Accepted 06 Oct 2017, Published online: 27 Oct 2017

References

  • Akin, O., & Zipursky, S.L. (2016). Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system. eLife, 5, 1–28. doi: 10.7554/eLife.20762
  • Apitz, H., & Salecker, I. (2015). A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nature Neuroscience, 18, 46–55. doi: 10.1038/nn0615-926b
  • Astigarraga, S., Hofmeyer, K., Farajian, R., & Treisman, J.E. (2010). Three Drosophila liprins interact to control synapse formation. Journal of Neuroscience, 30, 15358–15368. doi: 10.1523/JNEUROSCI.1862-10.2010
  • Bauke, A.-C., Sasse, S., Matzat, T., & Klambt, C. (2015). A transcriptional network controlling glial development in the Drosophila visual system. Development, 142, 2184–2193. doi: 10.1242/dev.119750
  • Bazigou, E., Apitz, H., Johansson, J., Lorén, C.E., Hirst, E.M.A., Chen, P.L., … Salecker, I. (2007). Anterograde jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell, 128, 961–975. doi: 10.1016/j.cell.2007.02.024
  • Berger-Muller, S., Sugie, A., Takahashi, F., Tavosanis, G., Hakeda-Suzuki, S., & Suzuki, T. (2013). Assessing the role of cell-surface molecules in central synaptogenesis in the Drosophila visual system. PLoS One, 8, 1–14. doi: 10.1371/journal.pone.0083732
  • Cajal, S. (1893). La retine des vertebres. La Cellule, 9, 17–25.
  • Cajal, S. (1937). Recollections of my life. Cambridge, MA: The MIT Press.
  • Cajal, S., & Sanchez, D. (1915). Contribucion al conocimiento de los centros nerviosos del los insectos. Trab Lab Invest Biol, 1983, 74(1-4), 1–164.
  • Carrillo, R.A., Özkan, E., Menon, K.P., Nagarkar-Jaiswal, S., Lee, P.-T., Jeon, M., … Zinn, K. (2015). Control of synaptic connectivity by a network of Drosophila IgSF cell surface proteins. Cell, 163, 1770–1782. doi: 10.1016/j.cell.2015.11.022
  • Chen, P.L., & Clandinin, T.R. (2008). The cadherin flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila. Neuron, 58, 26–33. doi: 10.1016/j.neuron.2008.01.007
  • Chen, Y., Akin, O., Nern, A., Tsui, C.Y.K., Pecot, M.Y., & Zipursky, S.L. (2014). Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron, 81, 280–293. doi: 10.1016/j.neuron.2013.12.021
  • Chen, Z., Del Valle Rodriguez, A., Li, X., Erclik, T., Fernandes, V.M., & Desplan, C. (2016). A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Reports, 15, 774–786. doi: 10.1016/j.celrep.2016.03.061
  • Choe, K.-M., Prakash, S., Bright, A., & Clandinin, T.R. (2006). Liprin-alpha is required for photoreceptor target selection in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 103, 11601–11606. doi: 10.1073/pnas.0601185103
  • Chotard, C., Leung, W., & Salecker, I. (2005). Glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron, 48, 237–251. doi: 10.1016/j.neuron.2005.09.019
  • Chotard, C., & Salecker, I. (2008). Glial cell development and function in the Drosophila visual system. Neuron Glia Biology, 3, 17–25. doi: 10.1017/S1740925X07000592
  • Clandinin, T.R., Lee, C.H., Herman, T., Lee, R.C., Yang, A.Y., Ovasapyan, S., & Zipursky, S.L. (2001). Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. Neuron, 32, 237–248. doi: 10.1016/S0896-6273(01)00474-3
  • Clandinin, T.R., & Zipursky, S.L. (2000). Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron, 28, 427–436. doi: 10.1016/S0896-6273(00)00122-7
  • Clandinin, T.R., & Zipursky, S.L. (2002). Review Making Connections in the Fly Visual System. Neuron, 35, 827–841. doi: 10.1016/S0896-6273(02)00876-0
  • Dearborn, R., He, Q., Kunes, S., & Dai, Y. (2002). Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. Journal of Neuroscience, 22, 1338–1349.
  • Dominici, C., Moreno-Bravo, J.A., Puiggros, S.R., Rappeneau, Q., Rama, N., Vieugue, P., … Chédotal, A. (2017). Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature, 545, 350–354. doi: 10.1038/nature22331
  • Edwards, T.N., & Meinertzhagen, I.A. (2009). Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila. Journal of Neuroscience, 29, 828–841. doi: 10.1523/JNEUROSCI.1022-08.2009
  • Edwards, T.N., & Meinertzhagen, I.A. (2010). The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in Neurobiology, 90, 471–497. doi: 10.1016/j.pneurobio.2010.01.001
  • Edwards, T.N., Nuschke, A.C., Nern, A., & Meinertzhagen, I.A. (2012). Organization and metamorphosis of glia in the Drosophila visual system. Journal of Comparative Neurology, 520, 2067–2085. doi: 10.1002/cne.23071
  • Erclik, T., Li, X., Courgeon, M., Bertet, C., Chen, Z., Baumert, R., … Kevin, P. (2017). Integration of temporal and spatial patterning generates neural diversity. Nature, 541, 365–370. doi: 10.1038/nature20794
  • Fan, Y., Soller, M., Flister, S., Hollmann, M., Müller, M., Bello, B., … Reichert, H. (2005). The egghead gene is required for compartmentalization in Drosophila optic lobe development. Developmental Biology, 287, 61–73. doi: 10.1016/j.ydbio.2005.08.031
  • Feinberg, E.H., VanHoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., & Bargmann, C.I. (2008). GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57, 353–363. doi: 10.1016/j.neuron.2007.11.030
  • Feoktistov, A.I., & Herman, T.G. (2016). Wallenda/DLK protein levels are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary boutons. Development, 143, 2983–2993. doi: 10.1242/dev.134403
  • Ferguson, K., Long, H., Cameron, S., Chang, W.-T., & Rao, Y. (2009). The conserved Ig superfamily member turtle mediates axonal tiling in Drosophila. Journal of Neuroscience, 29, 14151–14159. doi: 10.1523/JNEUROSCI.2497-09.2009
  • Fernandes, V., Chen, Z., Rossi, A., Zipfel, J., & Desplan, C. (2017). Glia relay differentiation cues to coordinate neuronal development in Drosophila. Science, 357, 886–891. doi: 10.1126/science.aan3174
  • Fischbach, K.-F., & Dittrich, A. P. (1989). The optic lobe of Drosophila melanogaster. I: A. Golgi analysis of wild-type structure. Cell Tissue Research, 258, 441–475. doi: 10.1007/BF00218858
  • Fischbach, K.-F., Linneweber, G.A., Andlauer, T.F.M., Hertenstein, A., Bonengel, B., & Chaudhary, K. (2009). The irre cell recognition module (IRM) proteins. Journal of Neurogenetics, 23, 48–67. doi: 10.1080/01677060802471668
  • Fouquet, W., Owald, D., Wichmann, C., Mertel, S., Depner, H., Dyba, M., … Sigrist, S.J. (2009). Maturation of active zone assembly by Drosophila Bruchpilot. Journal of Cell Biology, 186, 129–145. doi: 10.1083/jcb.200812150
  • Frank, D.D., Jouandet, G.C., Kearney, P.J., Macpherson, L.J., & Gallio, M. (2015). Temperature representation in the Drosophila brain. Nature, 519, 358–361. doi: 10.1038/nature14284
  • Freeman, M.R. (2015). Drosophila central nervous system glia. Cold Spring Harbor Perspectives in Biology, 7, pii:a020552. doi: 10.1101/cshperspect.a020552
  • Gao, S., Takemura, S., Ting, C., Huang, S., Lu, Z., Luan, H., … Lee, C. (2008). The neural substrate of spectral preference in Drosophila. Neuron, 60, 328–342. doi: 10.1016/j.neuron.2008.08.010
  • Gordon, M.D., & Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron, 61, 373–384. doi: 10.1016/j.neuron.2008.12.033
  • Górska-Andrzejak, J., Makuch, R., Stefan, J., Görlich, A., Semik, D., & Pyza, E. (2013). Circadian expression of the presynaptic active zone protein bruchpilot in the lamina of Drosophila melanogaster. Developmental Neurobiology, 73, 14–26. doi: 10.1002/dneu.22032
  • Hakeda-Suzuki, S., Berger-Müller, S., Tomasi, T., Usui, T., Horiuchi, S., Uemura, T., & Suzuki, T. (2011). Golden goal collaborates with flamingo in conferring synaptic-layer specificity in the visual system. Nature Neuroscience, 14, 314–323. doi: 10.1038/nn.2756
  • Hamanaka, Y., & Meinertzhagen, I.A. (2010). Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster. Journal of Comparative Neurology, 518, 1133–1155. doi: 10.1002/cne.22268
  • Hartenstein, V. (2011). Morphological diversity and development of glia in Drosophila. Glia, 59, 1237–1252. doi: 10.1002/glia.21162
  • Hassan, B.A., & Hiesinger, P.R. (2015). Beyond molecular codes: simple rules to wire complex brains. Cell, 163, 285–291. doi: 10.1016/j.cell.2015.09.031
  • Hattori, D., Millard, S.S., Wojtowicz, W.M., & Zipursky, S.L. (2008). Dscam-mediated cell recognition regulates neural circuit formation. Annual Review of Cell and Developmental Biology, 24, 597–620. doi: 10.1146/annurev.cellbio.24.110707.175250
  • Hiesinger, P.R., Zhai, R.G., Zhou, Y., Koh, T.W., Mehta, S.Q., Schulze, K.L., … Bellen, H.J. (2006). Activity-independent prespecification of synaptic partners in the visual map of Drosophila. Current Biology, 16, 1835–1843. doi: 10.1016/j.cub.2006.07.047
  • Hofmeyer, K., Maurel-Zaffran, C., Sink, H., & Treisman, J.E. (2006). Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting. Proceedings of the National Academy of Sciences of the United States of America, 103, 11595–11600. doi: 10.1073/pnas.0604766103
  • Hofmeyer, K., & Treisman, J.E. (2009). The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism. Proceedings of the National Academy of Sciences of the United States of America, 106, 19399–19404. doi: 10.1073/pnas.0903961106
  • Huang, Z., & Kunes, S. (1996). Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell, 86, 411–422. doi: 10.1016/S0092-8674(00)80114-2
  • Huang, Z., & Kunes, S. (1998). Signals transmitted along retinal axons in Drosophila: hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development (Cambridge, England), 125, 3753–3764. doi: 10.1016/s0092-8674(00)80094-x
  • Huang, Z., Shilo, B.Z., & Kunes, S. (1998). A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell, 95, 693–703. doi: 10.1016/S0092-8674(00)81639-6
  • Jenett, A., Rubin, G.M., Ngo, T.T.B., Shepherd, D., Murphy, C., Dionne, H., … Zugates, C.T. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell Reports, 2, 991–1001. doi: 10.1016/j.celrep.2012.09.011
  • Karuppudurai, T., Lin, T.Y., Ting, C.Y., Pursley, R., Melnattur, K.V., Diao, F., … Lee, C.H. (2014). A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron, 81, 603–615. doi: 10.1016/j.neuron.2013.12.010
  • Kirschfeld, K. (1967). Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Experimental Brain Research, 3, 248–270. doi: 10.1007/BF00235588
  • Kniss, J.S., Holbrook, S., & Herman, T.G. (2013). R7 photoreceptor axon growth is temporally controlled by the transcription factor Ttk69, which inhibits growth in part by promoting transforming growth factor-/activin signaling. Journal of Neuroscience, 33, 1509–1520. doi: 10.1523/JNEUROSCI.2023-12.2013
  • Kolodkin, A.L., & Hiesinger, P.R. (2017). Wiring visual systems: common and divergent mechanisms and principles. Current Opinion in Neurobiology, 42, 128–135. doi: 10.1016/j.conb.2016.12.006
  • Kremer, M.C., Jung, C., Batelli, S., Rubin, G.M., & Gaul, U. (2017). The glia of the adult Drosophila nervous system. Glia, 65, 606–638. doi: 10.1002/glia.23115
  • Kulkarni, A., Ertekin, D., Lee, C.H., & Hummel, T. (2016). Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife, 5, 1–22. doi: 10.7554/eLife.13715
  • Lah, G.J., Li, J.S.S., & Millard, S.S. (2014). Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron, 83, 1376–1388. doi: 10.1016/j.neuron.2014.08.002
  • Langen, M., Agi, E., Altschuler, D.J., Wu, L.F., Altschuler, S.J., & Hiesinger, P.R. (2015). The developmental rules of neural superposition in Drosophila. Cell, 162, 120–133. doi: 10.1016/j.cell.2015.05.055
  • Laughlin, S., Howard, J., & Blakeslee, B. (1987). Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proceedings of the Royal Society of London. Series B, Biological Sciences, 231, 437–467. doi: 10.1098/rspb.1987.0054
  • Lee, C.H., Herman, T., Clandinin, T.R., Lee, R., & Zipursky, S.L. (2001). N-cadherin regulates target specificity in the Drosophila visual system. Neuron, 30, 437–450. doi: 10.1016/S0896-6273(01)00291-4
  • Lee, R.C., Clandinin, T.R., Lee, C.H., Chen, P.L., Meinertzhagen, I.A., & Zipursky, S.L. (2003). The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nature Neuroscience, 6, 557–563. doi: 10.1038/nn1063
  • Li, X., Erclik, T., Bertet, C., Chen, Z., Voutev, R., Venkatesh, S., … Desplan, C. (2013). Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature, 498, 456–462. doi: 10.1038/nature12319
  • Lin, T.Y., Luo, J., Shinomiya, K., Ting, C.Y., Lu, Z., Meinertzhagen, I.A., & Lee, C.H. (2016). Mapping chromatic pathways in the Drosophila visual system. Journal of Comparative Neurology, 524, 213–227. doi: 10.1002/cne.23857
  • Luo, J., McQueen, P.G., Shi, B., Lee, C.-H., & Ting, C.-Y. (2016). Wiring dendrites in layers and columns. Journal of Neurogenetics, 30, 69–79. doi: 10.3109/01677063.2016.1173038
  • Lüthy, K., Ahrens, B., Rawal, S., Lu, Z., Tarnogorska, D., Meinertzhagen, I. A., & Fischbach, K.-F. (2014). The irre cell recognition module (IRM) protein kirre is required to form the reciprocal synaptic network of L4 neurons in the Drosophila lamina. Journal of Neurogenetics, 28, 1–11. doi: 10.3109/01677063.2014.883390
  • Macpherson, L.J., Zaharieva, E.E., Kearney, P.J., Alpert, M.H., Lin, T.-Y., Turan, Z., … Gallio, M. (2015). Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nature Communications, 6, 10024. doi: 10.1038/ncomms10024
  • Martin-Peña, A., Acebes, A., Rodriguez, J., Chevalier, V., Casas-tinto, S., Triphan, T., … Ferrus, A. (2014). Cell types and coincident synapses in the ellipsoid body of Drosophila. European Journal of Neuroscience, 39(10), 1586–1601. doi: 10.1111/ejn.12537
  • Maurel-Zaffran, C., Suzuki, T., Gahmon, G., Treisman, J.E., & Dickson, B.J. (2001). Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron, 32, 225–235. doi: 10.1016/S0896-6273(01)00471-8
  • Meinertzhagen, I.A. (1972). Erroneous projection of retinula axons beneath a dislocation in the retinal equator of Calliphora. Brain Research, 41, 39–49. doi: 10.1016/0006-8993(72)90615-4
  • Meinertzhagen, I.A., & Hansen, T.E. (1993). The development of the optic lobe. In M. Bate & A. Martinez-Arias (Eds.), The development of Drosophila melanogaster (pp. 1363–1491). New York: CSHL Press.
  • Meinertzhagen, I.A., & O’neil, S.D. (1991). Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. Journal of Comparative Neurology, 305, 232–263. doi: 10.1002/cne.903050206
  • Meinertzhagen, I.A., & Sorra, K.E. (2001). Synaptic organization in the fly's optic lamina: few cells, many synapses and divergent microcircuits. Progress in Brain Research, 131, 53–69.
  • Mencarelli, C., & Pichaud, F. (2015). Orthodenticle is required for the expression of principal recognition molecules that control axon targeting in the Drosophila retina. PLoS Genetics, 11, e1005303. doi: 10.1371/journal.pgen.1005303
  • Millard, S.S., Flanagan, J.J., Pappu, K.S., Wu, W., & Zipursky, S.L. (2007). Dscam2 mediates axonal tiling in the Drosophila visual system. Nature, 447, 720–724. doi: 10.1038/nature05855
  • Millard, S.S., Lu, Z., Zipursky, S.L., & Meinertzhagen, I.A. (2010). Drosophila Dscam proteins regulate postsynaptic specificity at multiple-contact synapses. Neuron, 67, 761–768. doi: 10.1016/j.neuron.2010.08.030
  • Morante, J., & Desplan, C. (2008). The color-vision circuit in the medulla of Drosophila. Current Biology, 18, 553–565. doi: 10.1016/j.cub.2008.02.075
  • Morante, J., Desplan, C., & Celik, A. (2007). Generating patterned arrays of photoreceptors. Current Opinion in Genetics and Development, 17, 314–319. doi: 10.1016/j.gde.2007.05.003
  • Morey, M., Yee, S.K., Herman, T., Nern, A., Blanco, E., & Zipursky, S.L. (2008). Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons. Nature, 456, 795–799. doi: 10.1038/nature07419
  • Mu, L., Ito, K., Bacon, J.P., & Strausfeld, N.J. (2012). Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes. Journal of Neuroscience, 32, 6061–6071. doi: 10.1523/JNEUROSCI.0221-12.2012
  • Neriec, N., & Desplan, C. (2016). From the eye to the brain: development of the Drosophila visual system. Current Topics in Developmental Biology, 116, 247–271. doi: 10.1016/bs.ctdb.2015.11.032
  • Nern, A., Nguyen, L.-V.T., Herman, T., Prakash, S., Clandinin, T.R., & Zipursky, S.L. (2005). An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proceedings of the National Academy of Sciences of the United States of America, 102, 12944–12949. doi: 10.1073/pnas.0502888102
  • Nern, A., Pfeiffer, B.D., & Rubin, G.M. (2015). Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proceedings of the National Academy of Sciences of the United States of America, 112, E2967–E2976. doi: 10.1073/pnas.1506763112
  • Nern, A., Zhu, Y., & Zipursky, S.L. (2008). Local N-cadherin interactions mediate distinct steps in the targeting of lamina neurons. Neuron, 58, 34–41. doi: 10.1016/j.neuron.2008.03.022
  • Newsome, T.P., Asling, B., & Dickson, B.J. (2000). Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development (Cambridge, England), 127, 851–860.
  • Ngo, K.T., Andrade, I., & Hartenstein, V. (2017). Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: a user’s guide to the dynamic morphology of the developing optic lobe. Developmental Biology, 428, 1–24. doi: 10.1016/j.ydbio.2017.05.008
  • Omoto, J.J., Lovick, J.K., & Hartenstein, V. (2016). Origins of glial cell populations in the insect nervous system. Current Opinion in Insect Science, 18, 96–104. doi: 10.1016/j.cois.2016.09.003
  • Otsuna, H., & Kei, I. (2006). Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. Journal of Comparative Neurology, 497, 928–958. doi: 10.1002/cne.21015
  • Otsuna, H., Shinomiya, K., & Ito, K. (2014). Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Frontiers in Neural Circuits, 8, 1–12. doi: 10.3389/fncir.2014.00008
  • Özel, M.N., Langen, M., Hassan, B.A., & Hiesinger, P.R. (2015). Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development. eLife, 4, 1–21. doi: 10.7554/eLife.10721
  • Özkan, E., Carrillo, R. A., Eastman, C.L., Weiszmann, R., Waghray, D., Johnson, K.G., … Garcia, K.C. (2013). An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell, 154, 228–239. doi: 10.1016/j.cell.2013.06.006
  • Panser, K., Tirian, L., Schulze, F., Villalba, S., Jefferis, G.S.X.E., Buhler, K., & Straw, A.D. (2016). Automatic segmentation of Drosophila neural compartments using GAL4 expression data reveals novel visual pathways. Current Biology, 26, 1943–1954. doi: 10.1016/j.cub.2016.05.052
  • Pappu, K.S., Morey, M., Nern, A., Spitzweck, B., Dickson, B.J., & Zipursky, S.L. (2011). Robo-3–mediated repulsive interactions guide R8 axons during Drosophila visual system development. Proceedings of the National Academy of Sciences of the United States of America, 108, 7571–7576. doi: 10.1073/pnas.1103419108
  • Pecot, M., Chen, Y., Akin, O., Chen, Z., Tsui, C.Y.K., & Zipursky, S.L. (2014). Sequential axon-derived signals couple target survival and layer specificity in the Drosophila visual system. Neuron, 82, 320–333. doi: 10.1016/j.neuron.2014.02.045
  • Pecot, M.Y., Tadros, W., Nern, A., Bader, M., Chen, Y., & Zipursky, S.L. (2013). Multiple interactions control synaptic layer specificity in the Drosophila visual system. Neuron, 77, 299–310. doi: 10.1016/j.neuron.2012.11.007
  • Petrovic, M., & Hummel, T. (2008). Temporal identity in axonal target layer recognition. Nature, 456, 800–803. doi: 10.1038/nature07407
  • Petrovic, M., & Schmucker, D. (2015). Axonal wiring in neural development: target-independent mechanisms help to establish precision and complexity. Bioessays, 36, 996–1004. doi: 10.1002/bies.201400222
  • Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., … Rubin, G.M. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 9715–9720. doi: 10.1073/pnas.0803697105
  • Pfeiffer, B.D., Ngo, T.-T.B., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., & Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186, 735–755. doi: 10.1534/genetics.110.119917
  • Pfeiffer, B.D., Truman, J.W., & Rubin, G.M. (2012). Using translational enhancers to increase transgene expression in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109, 6626–6631. doi: 10.1073/pnas.1204520109
  • Pineiro, C., Lopes, C.S., & Casares, F. (2014). A conserved transcriptional network regulates lamina development in the Drosophila visual system. Development, 141, 2838–2847. doi: 10.1242/dev.108670
  • Poeck, B., Fischer, S., Gunning, D., Zipursky, S.L., & Salecker, I. (2001). Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron, 29, 99–113. doi: 10.1016/S0896-6273(01)00183-0
  • Prakash, S., Caldwell, J.C., Eberl, D.F., & Clandinin, T.R. (2005). Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nature Neuroscience, 8, 443–450. doi: 10.1038/nn1415
  • Prakash, S., McLendon, H.M., Dubreuil, C.I., Ghose, A., Hwa, J., Dennehy, K.A., … Clandinin, T.R. (2009). Complex interactions amongst N-cadherin, DLAR, and Liprin-α regulate Drosophila photoreceptor axon targeting. Developmental Biology, 336, 10–19. doi: 10.1016/j.ydbio.2009.09.016
  • Richier, B., Vijandi, C.D.M., Mackensen, S., & Salecker, I. (2017). Lapsyn controls branch extension and positioning of astrocyte-like glia in the Drosophila optic lobe. Nature Communications, 8, 317–334. doi: 10.1038/s41467-017-00384-z
  • Rivera-Alba, M., Vitaladevuni, S.N., Mischenko, Y., Lu, Z., Takemura, S.Y., Scheffer, L., … De Polavieja, G.G. (2011). Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Current Biology, 21, 2000–2005. doi: 10.1016/j.cub.2011.10.022
  • Roignant, J.-Y., & Treisman, J.E. (2009). Pattern formation in the Drosophila eye disc. The International Journal of Developmental Biology, 53, 795–804. doi: 10.1387/ijdb.072483jr
  • Sanes, J.R., & Zipursky, S.L. (2010). Design principles of insect and vertebrate visual systems. Neuron, 66, 15–36. doi: 10.1016/j.neuron.2010.01.018
  • Sasse, S., Neuert, H., & Klämbt, C. (2015). Differentiation of Drosophila glial cells. Wiley Interdisciplinary Reviews: Developmental Biology, 4, 623–636. doi: 10.1002/wdev.198
  • Sato, M., Umetsu, D., Murakami, S., Yasugi, T., & Tabata, T. (2006). DWnt4 regulates the dorsoventral specificity of retinal projections in the Drosophila melanogaster visual system. Nature Neuroscience, 9, 67–75. doi: 10.1038/nn1604
  • Schwabe, T., Borycz, J.A., Meinertzhagen, I.A., & Clandinin, T.R. (2014). Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system. Current Biology, 24, 1304–1313. doi: 10.1016/j.cub.2014.04.047
  • Schwabe, T., Neuert, H., & Clandinin, T.R. (2013). XA network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell, 154, 351–364. doi: 10.1016/j.cell.2013.06.011
  • Senti, K., Usui, T., Boucke, K., Greber, U., Uemura, T., & Dickson, B. (2003). Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Current Biology, 13, 828–832. doi: 10.1016/S0960-9822(03)00291-4
  • Shinomiya, K., Takemura, S., Rivlin, P.K., Plaza, S.M., Scheffer, L.K., & Meinertzhagen, I.A. (2015). A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Frontiers in Neural Circuits, 9, 1–12. doi: 10.3389/fncir.2015.00033
  • Shinza-Kameda, M., Takasu, E., Sakurai, K., Hayashi, S., & Nose, A. (2006). Regulation of layer-specific targeting by reciprocal expression of a cell adhesion molecule, Capricious. Neuron, 49, 205–213. doi: 10.1016/j.neuron.2005.11.013
  • Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proceedings of the National Academy of Sciences of the United States of America, 50, 703–710. doi: 10.1073/pnas.50.4.703
  • Steinberg, M.S., & Takeichi, M. (1994). Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proceedings of the National Academy of Sciences of the United States of America, 91, 206–209. doi: 10.1073/pnas.91.1.206
  • Strausfeld, N.J., & Campos-Ortega, J.A. (1973). The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L). Brain Research, 59, 97–117. doi: 10.1016/0006-8993(73)90254-0
  • Strausfeld, N.J., & Meinertzhagen, I.A. (1998). The insect neuron: types, morphologies, fine structure and relationship to the architectonics of the insect nervous system. In F. Harrison & M. Locke (Eds.), Microscopic anatomy of invertebrates, vol. 11B, Insecta. New York: John Wiley & Sons.
  • Sugie, A., Hakeda-Suzuki, S., Suzuki, E., Silies, M., Shimozono, M., Mohl, C., … Tavosanis, G. (2015). Molecular remodeling of the presynaptic active zone of Drosophila photoreceptors via activity-dependent feedback. Neuron, 86, 711–726. doi: 10.1016/j.neuron.2015.03.046
  • Sugie, A., Umetsu, D., Yasugi, T., Fischbach, K.-F., & Tabata, T. (2010). Recognition of pre- and postsynaptic neurons via nephrin/NEPH1 homologs is a basis for the formation of the Drosophila retinotopic map. Development, 137, 3303–3313. doi: 10.1242/dev.047332
  • Suh, G.S.B., Poeck, B., Chouard, T., Oron, E., Segal, D., Chamovitz, D. a., & Zipursky, S.L. (2002). Drosophila JAB1/CSN5 acts in photoreceptor cells to induce glial cells. Neuron, 33, 35–46.10.1016/S0896-6273(01)00576-1
  • Suzuki, T., & Sato, M. (2014). Neurogenesis and neuronal circuit formation in the Drosophila visual center. Development Growth and Differentiation, 56, 491–498. doi: 10.1111/dgd.12151
  • Suzuki, T., Takayama, R., & Sato, M. (2016). Eyeless/Pax6 controls the production of glial cells in the visual center of Drosophila melanogaster. Developmental Biology, 409, 343–353. doi: 10.1016/j.ydbio.2015.12.004
  • Tadros, W., Xu, S., Akin, O., Yi, C.H., Shin, G.J., Eun, Millard, S.S., & … Zipursky, S.L. (2016). Dscam proteins direct dendritic targeting through adhesion. Neuron, 89, 480–493. doi: 10.1016/j.neuron.2015.12.026
  • Takemura, S., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., … Chklovskii, D.B. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature, 500, 175–181. doi: 10.1038/nature12450
  • Takemura, S., Nern, A., Chklovskii, D.B., Scheffer, L.K., Rubin, G.M., & Meinertzhagen, I.A. (2017). The comprehensive connectome of a neural substrate for "ON" motion detection in Drosophila. eLife, 6, e24394. doi: 10.7554/eLife.24394
  • Takemura, S., Xu, C.S., Lu, Z., Rivlin, P.K., Parag, T., Olbris, D.J., … Scheffer, L.K. (2015). Synaptic circuits and their variations within different columns in the visual system of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 112, 13711–13716. doi: 10.1073/pnas.1509820112
  • Takemura, S.Y., Karuppudurai, T., Ting, C.Y., Lu, Z., Lee, C.H., & Meinertzhagen, I.A. (2011). Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Current Biology, 21, 2077–2084. doi: 10.1016/j.cub.2011.10.053
  • Takemura, S.Y., Lu, Z., & Meinertzhagen, I. a. (2008). Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. Journal of Comparative Neurology, 509, 493–513. doi: 10.1002/cne.21757
  • Tan, L., Zhang, K.X., Pecot, M.Y., Nagarkar-Jaiswal, S., Lee, P.-T., Takemura, S.-Y., … Zipursky, S.L. (2015). Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell, 163, 1756–1769. doi: 10.1016/j.cell.2015.11.021
  • Tayler, T., Robixaux, M., & Garrity, P. (2004). Compartmentalization of visual centers in the Drosophila brain requires slit and robo proteins. Development, 131, 5935–5945. doi: 10.1242/dev.01465
  • Timofeev, K., Joly, W., Hadjieconomou, D., & Salecker, I. (2012). Localized netrins act as positional cues to control layer-specific targeting of photoreceptor axons in Drosophila. Neuron, 75, 80–93. doi: 10.1016/j.neuron.2012.04.037
  • Ting, C.-Y., Yonekura, S., Chung, P., Hsu, S.-N., Robertson, H.M., Chiba, A., & Lee, C.-H. (2005). Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development (Cambridge, England), 132, 953–963. doi: 10.1242/dev.01661
  • Ting, C.Y., Herman, T., Yonekura, S., Gao, S., Wang, J., Serpe, M., … Lee, C.H. (2007). Tiling of R7 axons in the Drosophila visual system is mediated both by transduction of an activin signal to the nucleus and by mutual repulsion. Neuron, 56, 793–806. doi: 10.1016/j.neuron.2007.09.033
  • Ting, C.Y., McQueen, P.G., Pandya, N., Lin, T.Y., Yang, M., Venkateswara Reddy, O., … Lee, C.H. (2014). Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron, 81, 830–846. doi: 10.1016/j.neuron.2013.12.012
  • Tomasi, T., Hakeda-Suzuki, S., Ohler, S., Schleiffer, A., & Suzuki, T. (2008). The transmembrane protein golden goal regulates R8 photoreceptor axon-axon and axon-target interactions. Neuron, 57, 691–704. doi: 10.1016/j.neuron.2008.01.012
  • Umetsu, D., Murakami, S., Sato, M., & Tabata, T. (2006). The highly ordered assembly of retinal axons and their synaptic partners is regulated by Hedgehog/Single-minded in the Drosophila visual system. Development, 133, 791–800. doi: 10.1242/dev.02253
  • Wu, M., Nern, A., Ryan Williamson, W., Morimoto, M.M., Reiser, M.B., Card, G.M., & Rubin, G.M. (2016). Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife, 5, 1–43. doi: 10.7554/eLife.21022
  • Yonekura, S., Ting, C.-Y., Neves, G., Hung, K., Hsu, S.-N., Chiba, A., … Lee, C.-H. (2006). The variable transmembrane domain of Drosophila N-cadherin regulates adhesive activity. Molecular and Cellular Biology, 26, 6598–6608. doi: 10.1128/MCB.00241-06
  • Zhang, K.X., Tan, L., Pellegrini, M., Zipursky, S.L., & McEwen, J.M. (2016). Rapid changes in the translatome during the conversion of growth cones to synaptic terminals. Cell Reports, 14, 1258–1271. doi: 10.1016/j.celrep.2015.12.102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.