3,763
Views
14
CrossRef citations to date
0
Altmetric
Reviews

A review on current additive manufacturing technologies and materials used for fabrication of metal-ceramic fixed dental prosthesis

&
Pages 2529-2546 | Received 28 Dec 2020, Accepted 03 Mar 2021, Published online: 23 Mar 2021

References

  • Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27(1):83–96.
  • Walton TR. The up to 25-year survival and clinical performance of 2,340 high gold-based metal-ceramic single crowns. Int J Prosthodont. 2013;26(2):151–160.
  • Özcan M. Fracture reasons in ceramic-fused-to-metal restorations. J Oral Rehabil. 2003;30(3):265–269.
  • Coornaert J, Adriaens P, De Boever J. Long-term clinical study of porcelain-fused-to-gold restorations. J Prosthet Dent. 1984;51(3):338–342.
  • Özcan M, Niedermeier W. Clinical study on the reasons for and location of failures of metal-ceramic restorations and survival of repairs. Int J Prosthodont. 2002;15:299–302.
  • Drago C, Howell K. Concepts for designing and fabricating metal implant frameworks for hybrid implant prostheses. J Prosthodont. 2012;21(5):413–424.
  • Beguma Z, Chhedat P. Rapid prototyping--when virtual meets reality. Int J Comput Dent. 2014;17(4):297–306.
  • Berman B. 3-D printing: the new industrial revolution. Bus Horiz. 2012;55(2):155–162.
  • Dawood A, Marti Marti B, Sauret-Jackson V, et al. 3D printing in dentistry. Br Dent J. 2015;219(11):521–529.
  • Kruth JP, Van Den Broucke B, van Vaerenbergh J, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. Les 11emes Assises europeennes du Prototypage rapide (AFPR) 4–5 October 2005, Paris, France, S4; 2005.
  • Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont. 2012;21(8):641–644.
  • van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12.
  • Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater. 2008;24(10):1311–1315.
  • Örtorp A, Jönsson D, Mouhsen A, et al. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater. 2011;27(4):356–363.
  • Alharbi N, Wismeijer D, Osman RB. Additive manufacturing techniques in prosthodontics: where do we currently stand? A critical review. Int J Prosthodont. 2017;30(5):474–484.
  • Hirt L, Reiser A, Spolenak R, et al. Additive manufacturing of metal structures at the micrometer scale. Adv Mater. 2017;29(17):1604211.
  • Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16(2):57–67.
  • Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials. 2017;10(6):672.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.
  • Sing SL, An J, Yeong WY, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369–385.
  • Dikova T, Panova N, Simov M. Application of laser technologies in dental prothetics. Mach Technol Mater. 2011;6:32–35.
  • Niemann P. Laser-Sinterverfahren in der CAD/CAM-Technik. Quintessenz Zahntechnik. 2003;29:38–42.
  • Rudolph MS. J. Ein CAD/CAM-System mit aufbauender Lasertechnologie. Quintessenz Zahntechnik. 2007;33:582–587.
  • Szwedka G, Claisse L. CAD-unterstützte lasergestützte Fertigung von Zahnersatz - Fallbeispiele aus der Kombinationstechnologie. Quintessenz Zahntechnik. 2011;37:374–380.
  • Childs THC, Hauser C, Badrossamay M. Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. P I Mech Eng B-J Eng. 2005;219(4):339–357.
  • Guo LF, Yue TM, Man HC. Melting behaviour of a powder bed under laser irradiation. Laser Eng. 2006;16:215–234.
  • Lepski D, Kusch HG, Reitzenstein W. Modelling of diffusion controlled moving boundary processes during the laser remelting of ferritic nodular cast iron – carbon diffusion in laser remelting. Laser Eng. 1997;5:247–274.
  • Gischer F, Klare M. Grundlagen von Schichtbauverfahren und deren Auswirkungen auf den Dentalmarkt. Quintessenz Zahntechnik. 2009;35:1128.
  • Riquier R. Frästechnik versus Lasersintern. Quintessenz Zahntechnik. 2006;32:534–546.
  • Williams RJ, Bibb R, Eggbeer D, et al. Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent. 2006;96(2):96–99.
  • Revilla-Leon M, Sanchez-Rubio JL, Besne-Torre A, et al. A report on a diagnostic digital workflow for esthetic dental rehabilitation using additive manufacturing technologies. Int J Esthet Dent. 2018;13:184–196.
  • Ayyildiz S, Soylu EH, Ide S, et al. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness. J Adv Prosthodont. 2013;5(4):471–478.
  • Ayyildiz S. The place of direct metal laser sintering (DMLS) in dentistry and the importance of annealing. Mater Sci Eng C Mater Biol Appl. 2015;52:343.
  • Barucca G, Santecchia E, Majni G, et al. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering. Mater Sci Eng C Mater Biol Appl. 2015;48:263–269.
  • Revilla-Leon M, Sanchez-Rubio JL, Oteo-Calatayud J, et al. Impression technique for a complete-arch prosthesis with multiple implants using additive manufacturing technologies. J Prosthet Dent. 2017;117(6):714–720.
  • Strietzel R. Selektives Laserschmelzen für die Verarbeitung dentaler Legierungspulver. Quintessenz Zahntechnik. 2009;35:1112–1125.
  • Fischer J, Stawarczyk B, Trottmann A, Hämmerle CHF. Festigkeit lasergesinterter Brückengerüste aus einer CoCr-Legierung. Quintessenz Zahntechnik. 2008;34:140–149.
  • Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf. 2018;19:1–20.
  • Arias-Gonzáleza F, del Vala J, Comesañab R, et al. Additive manufacturing based on laser cladding of Cp-Ti for dental implants. Lasers in Manufacturing Conference 2015, 2015.
  • Schütz M. Rapid manufacturing. Quintessenz Zahntechnik. 2009;35:1174–1178.
  • Ahmed N. Direct metal fabrication in rapid prototyping: a review. J Manuf Process. 2019;42:167–191.
  • Pini NP, Aguiar FH, Lima DA, et al. Advances in dental veneers: materials, applications, and techniques. Clin Cosmet Investig Dent. 2012;4:9–16.
  • Park JK, Lee WS, Kim HY, et al. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems. J Adv Prosthodont. 2015;7(2):122–128.
  • Wataha JC, Shor K. Palladium alloys for biomedical devices. Exp Rev Med Dev. 2010;7(4):489–501.
  • Berzins DW, Kawashima I, Graves R, et al. Heat treatment effects on electrochemical corrosion parameters of high-Pd alloys. J Mater Sci Mater Med. 2008;19(1):335–341.
  • Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71–84.
  • Zeng L, Xiang N, Wei B. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing. J Prosthet Dent. 2014;112(5):1217–1224.
  • Wu L, Zhu H, Gai X, et al. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J Prosthet Dent. 2014;111(1):51–55.
  • Henriques B, Soares D, Silva FS. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations. J Mech Behav Biomed Mater. 2012;12:83–92.
  • Tuna SH, Özçiçek Pekmez N, Kürkçüoğlu I. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods. J Prosthet Dent. 2015;114(5):725–734.
  • Nakajima H, Okabe T. Titanium in dentistry: development and research in the U.S.A. Dent Mater J. 1996;15(2):77–90.
  • ADA Council on Scientific Affairs. Titanium applications in dentistry. J Am Dent Assoc. 2003;134:347–349.
  • Kanazawa M, Iwaki M, Minakuchi S, et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. J Prosthet Dent. 2014;112(6):1441–1447.
  • Mangano F, Chambrone L, van Noort R, et al. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014;2014:461534
  • Franco A, Lanzetta M, Romoli L. Experimental analysis of selective laser sintering of polyamide powders: an energy perspective. J Clean Prod. 2010;18(16–17):1722–1730.
  • Bae EJ, Kim JH, Kim WC, et al. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering. J Adv Prosthodont. 2014;6(4):266–271.
  • Li R, Liu J, Shi Y, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol. 2012;59(9–12):1025–1035.
  • Gupta S, Dahiya V, Shukla P. Surface topography of dental implants: a review. J Dent Implant. 2014;4(1):66.
  • Castillo-Oyague R, Osorio R, Osorio E, et al. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc Res Tech. 2012;75(9):1206–1212.
  • Ucar Y, Akova T, Akyil MS, et al. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent. 2009;102(4):253–259.
  • Takaichi A, Suyalatu, Nakamoto T, Joko N, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013;21:67–76.
  • Xin XZ, Chen J, Xiang N, et al. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell Biochem Biophys. 2013;67(3):983–990.
  • Al Jabbari YS, Koutsoukis T, Barmpagadaki X, et al. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater. 2014;30(4):e79–88.
  • Kul E, Aladag LI, Duymus ZY. Comparison of the metal-ceramic bond after recasting and after laser sintering. J Prosthet Dent. 2015;114(1):109–113.
  • Safdar A, Wei LY, Snis A, et al. Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater Charact. 2012;65:8–15.
  • Xu W, Lui EW, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017;125:390–400.
  • Hammad IA, Talic YF. Designs of bond strength tests for metal-ceramic complexes: review of the literature. J Prosthet Dent. 1996;75(6):602–608.
  • Hama Suleiman S, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand. 2013;71(5):1280–1289.
  • Böhme NS. R. Bonder für edelmetallfreie Legierungen? Quintessenz Zahntechnik. 2009;35:274–283.
  • Xin XZ, Chen J, Xiang N, et al. Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing. Dent Mater. 2014;30(3):263–270.
  • Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011;30(3):274–280.
  • Simoes S. Recent progress in the joining of titanium alloys to ceramics. Metals. 2018;8(11):876.
  • de Vasconcellos LG, Buso L, Lombardo GH, et al. Opaque layer firing temperature and aging effect on the flexural strength of ceramic fused to cobalt-chromium alloy. J Prosthodont. 2010;19(6):471–477.
  • Kumar R, Pathak R, Singh P, et al. Comparison of bond strength and fracture toughness of metal–ceramic restorations fabricated by conventional lost-wax technique and selective laser sintering. Int J Oral Care Res. 2019;7(2):43–45.
  • Revilla-Leon M, Meyer MJ, Ozcan M. Metal additive manufacturing technologies: literature review of current status and prosthodontic applications. Int J Comput Dent. 2019;22:55–67.
  • Akova T, Ucar Y, Tukay A, et al. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24(10):1400–1404.
  • Oyague RC, Sanchez-Turrion A, Lopez-Lozano JF, et al. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques. Odontology. 2012;100(2):249–253.
  • Oyague RC, Sanchez-Turrion A, Lopez-Lozano JF, et al. Vertical discrepancy and microleakage of laser-sintered and vacuum-cast implant-supported structures luted with different cement types. J Dent. 2012;40:123–130.
  • Gunsoy S, Ulusoy M. Evaluation of marginal/internal fit of chrome-cobalt crowns: direct laser metal sintering versus computer-aided design and computer-aided manufacturing. Niger J Clin Pract. 2016;19(5):636–644.
  • Nassif QK, Alshaarani FF. Influence of porcelain firing on changes in the marginal fit of metal-ceramic fixed partial dental prostheses fabricated with laser sintering: an in vivo study. Dent Med Probl. 2020;57(2):185–190.
  • Pompa G, Di Carlo S, De Angelis F, et al. Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: an in vitro study. Biomed Res Int. 2015;2015:1–7.
  • Presotto AGC, Barao VAR, Bhering CLB, et al. Dimensional precision of implant-supported frameworks fabricated by 3D printing. J Prosthet Dent. 2019;122(1):38–45.
  • Despeisse M, Minshall T. Skills and education for additive manufacturing: a review of emerging issues. In: Lödding H, Riedel R; Thoben KD, Von Cieminski G, Kiritsis D, editors. Advances in production management systems. The path to intelligent, collaborative and sustainable manufacturing. Cham: Springer; 2017. p. 289–297.
  • Liu ZY, Li C, Fang XY, et al. Energy consumption in additive manufacturing of metal parts. Procedia Manuf. 2018;26:834–845.
  • Verhoef LA, Budde BW, Chockalingam C, et al. The effect of additive manufacturing on global energy demand: an assessment using a bottom-up approach. Energ Policy. 2018;112:349–360.
  • Revilla-Leon M, Ceballos L, Martinez-Klemm I, et al. Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies. J Prosthet Dent. 2018;120(6):942–947.
  • Limones A, Molinero-Mourelle P, Azevedo L, et al. Zirconia-ceramic versus metal-ceramic posterior multiunit tooth-supported fixed dental prostheses: a systematic review and meta-analysis of randomized controlled trials. J Am Dent Assoc. 2020;151(4):230–238.e237.
  • Sailer I, Balmer M, Husler J, et al. 10-Year randomized trial (RCT) of zirconia-ceramic and metal-ceramic fixed dental prostheses. J Dent. 2018;76:32–39.
  • Tanner J, Niemi H, Ojala E, et al. Zirconia single crowns and multiple-unit FDPs-An up to 8 -year retrospective clinical study. J Dent. 2018;79:96–101.
  • Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont. 2010;23(6):493–502.
  • Körner C. Additive manufacturing of metallic components by selective electron beam melting — a review. Int Mater Rev. 2016;61(5):361–377.