41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning-based characterization of friction stir welding in aluminum alloys

Received 21 Feb 2024, Accepted 13 Apr 2024, Published online: 30 Apr 2024

References

  • Yang ZZ, Jiang SS, Ye LX, et al. Nanoscale structural heterogeneity perspective on the ameliorated magnetic properties of a Fe-based amorphous alloy with decreasing cooling rate. J. Non. Cryst. Solids. 2022;581:121433. doi: 10.1016/j.jnoncrysol.2022.121433.
  • Singh VP, Kumar D, Kuriachen B. Parametric effect on microstructure evolution, grain size and mechanical behaviour of friction stir butt welding of AA6061-T6 alloy. J. Adhes. Sci. Technol. n.d;:1–25. doi: 10.1080/01694243.2024.2303244.
  • Saha R, Biswas P. Current status and development of external energy-assisted friction stir welding processes: a review. Weld World. 2022;66(3):577–609. doi: 10.1007/s40194-021-01228-7.
  • Liu H, Morisada Y, Fujii H. Friction stir welding: process, temperature, microstructure and properties. Sci. Technol. Weld. Join. 2023;28:1–14.
  • Sajjadi Nikoo S, Qods F, Yousefieh M. Microstructure evolution and mechanical properties of friction stir welded joint of ultrafine-grained dissimilar AA2024/AA5083 composite fabricated by accumulative roll bonding. J. Adhes. Sci. Technol. 2024;38(1):92–114. doi: 10.1080/01694243.2023.2222919.
  • Kaushik P, Kumar Dwivedi D. Heat generation and steel fragment effects on friction stir welding of aluminum alloy with steel. Mater. Manuf. Process. 2023;39:1–13.
  • Liu X, Sun Z. Numerical simulation of vortex-friction stir welding based on internal friction between identical materials. Int. J. Heat Mass Transf. 2022;185:122418. doi: 10.1016/j.ijheatmasstransfer.2021.122418.
  • Nayak SS, Iqbal MP, Jain R, et al. A computationally efficient multiphysics model for friction stir welding with polygonal pin profiles. J. Adhes. Sci. Technol. 2024;38(5):654–686. doi: 10.1080/01694243.2023.2241635.
  • Khalaf HI, Al-Sabur R, Abdullah ME, et al. Effects of underwater friction stir welding heat generation on residual stress of AA6068-T6 aluminum alloy. Materials (Basel). 2022;15(6):2223. doi: 10.3390/ma15062223.
  • Akbari M, Aliha MRM, Berto F. Investigating the role of different components of friction stir welding tools on the generated heat and strain. Forces Mech. 2023;10:100166. doi: 10.1016/j.finmec.2023.100166.
  • Nagarajan BM, Manoharan M. Enhancement of joint strength of dissimilar aluminum/polymer hybrid joints by friction stir spot welding by surface textures. J. Adhes. Sci. Technol. n.d;38(8):1284–1311. doi: 10.1080/01694243.2023.2256557.
  • Zhang X, Ma Y, Li W, et al. A review of residual stress effects on fatigue properties of friction stir welds. Crit. Rev. Solid State Mater. Sci. 2022;48(6):775–813. doi: 10.1080/10408436.2022.2138828.
  • Abbasi M, Abdollahzadeh A, Bagheri B, et al. Study on the effect of the welding environment on the dynamic recrystallization phenomenon and residual stresses during the friction stir welding process of aluminum alloy. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021;235(8):1809–1826. doi: 10.1177/14644207211025113.
  • Chauhan G, Sahu M, Prasad P, et al. Evolution of residual stresses in friction stir welded joints of AA7039. J. Inst. Eng. India Ser. D. 2023;104(1):213–223. doi: 10.1007/s40033-022-00384-4.
  • Hashemzadeh M, Garbatov Y, Guedes Soares C, et al. Friction stir welding induced residual stresses in thick steel plates from experimental and numerical analysis. Ships Offshore Struct. 2022;17(5):1053–1061. doi: 10.1080/17445302.2021.1893531.
  • Ahmed, MMZ, Habba MIA, Jouini, N. et al. Bobbin tool friction stir welding of aluminum using different tool pin geometries: mathematical models for the heat generation. Metals (Basel). 2021;11(3):438. doi: 10.3390/met11030438.
  • Wang X, Gao Y, Liu X, et al. Tool-workpiece stick-slip conditions and their effects on torque and heat generation rate in the friction stir welding. Acta Mater. 2021;213:116969. doi: 10.1016/j.actamat.2021.116969.
  • Meyghani B, Awang M. The influence of the tool tilt angle on the heat generation and the material behavior in friction stir welding (FSW). Metals (Basel). 2022;12(11):1837. doi: 10.3390/met12111837.
  • Zhang G, Wu C, Gao J. Ultrasonic line source and its coupling with the tool induced heat generation and material flow in friction stir welding. J. Mater. Res. Technol. 2022;21:502–518. doi: 10.1016/j.jmrt.2022.09.053.
  • Bhattacharyya M, Gnaupel-Herold T, Raja KS, et al. Evaluation of residual stresses in isothermal friction stir welded 304L stainless steel plates. Mater. Sci. Eng. A. 2021;826:141982. doi: 10.1016/j.msea.2021.141982.
  • Salih OS, Ou H, Sun W. Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy. Int. J. Mech. Sci. 2023;238:107827. doi: 10.1016/j.ijmecsci.2022.107827.
  • Ranjole C, Singh VP, Kuriachen B, et al. Numerical prediction and experimental investigation of temperature, residual stress and mechanical properties of dissimilar friction-stir welded AA5083 and AZ31 alloys. Arab J Sci Eng. 2022;47(12):16103–16115. doi: 10.1007/s13369-022-06808-3.
  • Salloomi KN, Al-Sumaidae S. Coupled eulerian–lagrangian prediction of thermal and residual stress environments in dissimilar friction stir welding of aluminum alloys. J. Adv. Join. Process. 2021;3:100052. doi: 10.1016/j.jajp.2021.100052.
  • Das D, Das AK, Pratihar DK, et al. Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020;235(11):2008–2021. doi: 10.1177/0954406220950343.
  • Didi F, Pallathadka H, Abdullaev S, et al. Probing the impact of process variables in laser-welded aluminum alloys: a machine learning study. Mater. Today Commun. 2024;38:107660. doi: 10.1016/j.mtcomm.2023.107660.
  • Zhang P, Bai W, Wu Y, et al. Influence and mechanism of welding residual stress of 16MnR with machine learning BT. The 2021 international conference on machine learning and big data analytics for IoT security and privacy., in: j. Macintyre, J. Zhao, X. Ma (Eds.), Springer International Publishing, Cham, 2022: pp. 211–220.
  • Anandan B, Manikandan M. Machine learning approach with various regression models for predicting the ultimate tensile strength of the friction stir welded AA 2050-T8 joints by the K-fold cross-validation method. Mater. Today Commun. 2023;34:105286. doi: 10.1016/j.mtcomm.2022.105286.
  • Verma S, Misra JP, Singh J, et al. Prediction of tensile behavior of FS welded AA7039 using machine learning. Mater. Today Commun. 2021;26:101933. doi: 10.1016/j.mtcomm.2020.101933.
  • Sarsilmaz F, Kavuran G. Prediction of the optimal FSW process parameters for joints using machine learning techniques. Materials Testing. 2021;63:1104–1111. doi: 10.1515/mt-2021-0058.
  • Verma S, Misra JP, Popli D. Modeling of friction stir welding of aviation grade aluminium alloy using machine learning approaches. Int. J. Model. Simul. 2022;42(1):1–8. doi: 10.1080/02286203.2020.1803605.
  • Verma S, Gupta M, Misra JP. Performance evaluation of friction stir welding using machine learning approaches. MethodsX. 2018;5:1048–1058. doi: 10.1016/j.mex.2018.09.002.
  • Kumar AK, Surya MS, Venkataramaiah P. Performance evaluation of machine learning based-classifiers in friction stir welding of Aa6061-T6 alloy. Int J Interact Des Manuf. 2023;17(1):469–472. doi: 10.1007/s12008-022-00904-2.
  • Baruah A, Borkar H. Optimised machine learning classification model to detect void formations in friction stir welding. Mater. Today Proc. 2023; doi: 10.1016/j.matpr.2023.03.386.
  • Guan W, Zhao Y, Liu Y, et al. Force data-driven machine learning for defects in friction stir welding. Scr. Mater. 2022;217:114765. doi: 10.1016/j.scriptamat.2022.114765.
  • Elsheikh AH. Applications of machine learning in friction stir welding: prediction of joint properties, real-time control and tool failure diagnosis. Eng. Appl. Artif. Intell. 2023;121:105961. doi: 10.1016/j.engappai.2023.105961.
  • Balachandar K, Arockiaraj KSS, Sriraman G, et al. Development of a machine learning model to predict the friction stir welding tool condition. Mater. Today Proc. 2023;
  • Benson DJ, Okazawa S. Contact in a multi-material eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 2004;193(39-41):4277–4298. doi: 10.1016/j.cma.2003.12.061.
  • Salloomi KN. Defect monitoring in dissimilar friction stir welding of aluminum alloys using coupled Eulerian-Lagrangian (CEL) finite element model. Adv. Mater. Process. Technol. 2023;9(3):931–947. doi: 10.1080/2374068X.2022.2106669.
  • Zhai M, Wu C, Su H. Influence of tool tilt angle on heat transfer and material flow in friction stir welding. J. Manuf. Process. 2020;59:98–112. doi: 10.1016/j.jmapro.2020.09.038.
  • Aghajani Derazkola H, Kordani N, Aghajani Derazkola H. Effects of friction stir welding tool tilt angle on properties of Al-Mg-Si alloy T-joint. CIRP J. Manuf. Sci. Technol. 2021;33:264–276. doi: 10.1016/j.cirpj.2021.03.015.
  • Myung D, Noh W, Kim J-H, et al. Probing the mechanism of friction stir welding with ALE based finite element simulations and its application to strength prediction of welded aluminum. Met. Mater. Int. 2021;27(4):650–666. doi: 10.1007/s12540-020-00901-8.
  • Zhang H, Zhou L, Li W, et al. Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints. Int J Miner Metall Mater. 2021;28(4):699–709. doi: 10.1007/s12613-020-2044-x.
  • Baruah A, Murugesan J, Borkar H. Numerically modelled study of the plunge stage in friction stir spot welding using multi-tiered mesh partitions. Eng. Res. Express. 2021;3(4):045015. doi: 10.1088/2631-8695/ac352e.
  • Al-Badour F, Merah N, Shuaib A, et al. Coupled eulerian lagrangian finite element modeling of friction stir welding processes. J. Mater. Process. Technol. 2013;213(8):1433–1439. doi: 10.1016/j.jmatprotec.2013.02.014.
  • Malik V, Saxena K. Understanding tool–workpiece interfacial friction in friction stir welding/processing and its effect on weld formation. Adv. Mater. Process. Technol. 2022;8(sup4):2156–2172. doi: 10.1080/2374068X.2022.2036042.
  • Hassanamraji N, Eivani AR, Aboutalebi MR. Finite element simulation of deformation and heat transfer during friction stir processing of as-cast AZ91 magnesium alloy. J. Mater. Res. Technol. 2021;14:2998–3017. doi: 10.1016/j.jmrt.2021.08.087.
  • Ambrosio D, Tongne A, Wagner V, et al. Towards material flow prediction in friction stir welding accounting for mechanisms governing chip formation in orthogonal cutting. J. Manuf. Process. 2023;85:450–465. doi: 10.1016/j.jmapro.2022.11.047.
  • Maniscalco J, Elmustafa AA, Bhukya S, et al. Numerical simulation of the Donor-Assisted stir material for friction stir welding of aluminum alloys and carbon steel. Metals (Basel). 2023;13(1):164. doi: 10.3390/met13010164.
  • Wen Q, Li WY, Gao YJ, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy. Int J Adv Manuf Technol. 2019;100(9-12):2679–2687. doi: 10.1007/s00170-018-2750-y.
  • Jaspers S, Dautzenberg JH. Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J. Mater. Process. Technol. 2002;122(2-3):322–330. doi: 10.1016/S0924-0136(01)01228-6.
  • Daoud M, Chatelain JF, Bouzid A. Effect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int J Adv Manuf Technol. 2015;81(9-12):1987–1997. doi: 10.1007/s00170-015-7179-y.
  • Walters DJ, Biswas A, Lawrence EC, et al. Bayesian calibration of strength parameters using hydrocode simulations of symmetric impact shock experiments of Al-5083. J. Appl. Phys. 2018;124:205105.
  • Dannemann KA, Chocron S, Anderson CE, Jr, et al. Comparison of mechanical and constitutive response for five aluminum alloys for armor applications. In 16th US Natl. Congr. Theor. Appl. Mech. Usn. State Coll. Pennsylvania, 2010.
  • Akram S, Jaffery SHI, Khan M, et al. Numerical and experimental investigation of johnson–cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approach. Adv. Mech. Eng. 2018;10(9):168781401879779. doi: 10.1177/1687814018797794.
  • Brar NS, Joshi VS, Harris BW. Constitutive model constants for Al7075‐t651 and Al7075‐t6. In: Aip Conf. Proc., American Institute of Physics, 2009. p. 945–948.
  • Rasaee S, Mirzaei AH, Almasi D. Constitutive modelling of Al7075 using the johnson–cook model. Bull Mater Sci. 2020;43(1):23. doi: 10.1007/s12034-019-1987-x.
  • Liao S, Feng C. Meta-ELM: ELM with ELM hidden nodes. Neurocomputing. 2014;128:81–87. doi: 10.1016/j.neucom.2013.01.060.
  • Yang J, Yang F, Zhou Y, et al. A data-driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit. Inf. Sci. (Ny). 2021;566:103–117. doi: 10.1016/j.ins.2021.02.064.
  • Wang N, Samavatian M, Samavatian V, et al. Bayesian machine learning-aided approach bridges between dynamic elasticity and compressive strength in the cement-based mortars. Mater. Today Commun. 2023;35:106283. doi: 10.1016/j.mtcomm.2023.106283.
  • Hasan M, Acar P. Machine learning reinforced microstructure-sensitive prediction of material property closures. Comput. Mater. Sci. 2022;210:110930. doi: 10.1016/j.commatsci.2021.110930.
  • Kang M-C, Yoo D-Y, Gupta R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr. Build. Mater. 2021;266:121117. doi: 10.1016/j.conbuildmat.2020.121117.
  • Li T. Machine learning-based inverse solution for predictions of impact conditions during car collisions., University of California, Berkeley, 2019.
  • Shen Z, Samavatian M, Samavatian V. Integrating impulse excitation technique and machine learning to analyze elastic moduli in surface coatings. Eur. J. Mech. A/Solids. 2024;105:105250. doi: 10.1016/j.euromechsol.2024.105250.
  • Mamun O, Winther KT, Boes JR, et al. A bayesian framework for adsorption energy prediction on bimetallic alloy catalysts. Npj Comput. Mater. 2020;6:177.
  • MacAllister A, Kohl A, Winer E. Using high-fidelity meta-models to improve performance of small dataset trained bayesian networks. Expert Syst. Appl. 2020;139:112830. doi: 10.1016/j.eswa.2019.112830.
  • Jebli I, Belouadha F-Z, Kabbaj MI, et al. Prediction of solar energy guided by pearson correlation using machine learning. Energy. 2021;224:120109. doi: 10.1016/j.energy.2021.120109.
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Can. Metall. Q. 2012;51(3):250–261. doi: 10.1179/1879139512Y.0000000015.
  • Ambrosio D, Morisada Y, Ushioda K, et al. Material flow in friction stir welding: a review. J. Mater. Process. Technol. 2023;320:118116. doi: 10.1016/j.jmatprotec.2023.118116.
  • Baghdadi AH, Sajuri Z, Keshtgar A, et al. Mechanical property improvement in dissimilar friction stir welded Al5083/Al6061 joints: effects of post-weld heat treatment and abnormal grain growth. Materials (Basel). 2022;15(1):288. doi: 10.3390/ma15010288.
  • Amatullah M, Jan M, Farooq M, et al. Effect of tool rotational speed on the friction stir welded aluminum alloys: a review. Mater. Today Proc. 2022;62:245–250. doi: 10.1016/j.matpr.2022.03.220.
  • Ahmed MMZ, El-Sayed Seleman MM, Fydrych D, et al. Friction stir welding of aluminum in the aerospace industry: the current progress and state-of-the-art review. Materials (Basel). 2023;16(8):2971. doi: 10.3390/ma16082971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.