237
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury

, , , , , , , & ORCID Icon show all
Pages 96-105 | Received 28 Apr 2023, Accepted 03 Apr 2024, Published online: 16 Apr 2024

References

  • Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40(1):31–39. doi:10.1055/s-0039-1683996.
  • Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev. Dis Primers. 2019;5:18.
  • Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533.
  • Yehya N, Smith L, Thomas NJ, et al. Definition, incidence, and epidemiology of pediatric acute respiratory distress syndrome: from the second pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2023;24(12 Suppl 2):S87–s98. doi:10.1097/PCC.0000000000003161.
  • ten Duis HJ. The fat embolism syndrome. Injury. 1997;28(2):77–85. doi:10.1016/s0020-1383(96)00085-x.
  • Inoue H, Nakagawa Y, Ikemura M, Usugi E, Nata M. Molecular-biological analysis of acute lung injury (Ali) induced by heat exposure and/or intravenous administration of oleic acid. Leg Med (Tokyo). 2012;14(6):304–308. doi:10.1016/j.legalmed.2012.06.003.
  • Xu GL, Yao L, Rao SY, Gong ZN, Zhang SQ, Yu SQ. Attenuation of acute lung injury in mice by oxymatrine is associated with inhibition of phosphorylated P38 mitogen-activated protein kinase. J Ethnopharmacol. 2005;98(1-2):177–183. doi:10.1016/j.jep.2005.01.026.
  • Chen HI, Hsieh NK, Kao SJ, Su CF. Protective effects of propofol on acute lung injury induced by oleic acid in conscious rats. Crit Care Med. 2008;36(4):1214–1221. doi:10.1097/CCM.0b013e31816a0607.
  • Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB. Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012;93(4):1331–1339. doi:10.1016/j.athoracsur.2011.06.107.
  • Wong JJ-M, Jit M, Sultana R, et al. Mortality in pediatric acute respiratory distress syndrome: a systematic review and meta-analysis. J Intensive Care Med. 2019;34(7):563–571. doi:10.1177/0885066617705109.
  • Zhou L, Yang R, Xue C, et al. Biphasic positive airway pressure spontaneous breathing attenuates lung injury in an animal model of severe acute respiratory distress syndrome. BMC Anesthesiol. 2022;22(1):228. doi:10.1186/s12871-022-01763-w.
  • Puuvuori E, Chiodaroli E, Estrada S, et al. Pet imaging of neutrophil elastase with (11)C-Gw457427 in acute respiratory distress syndrome in pigs. J Nucl Med. 2022;64(3):423–429. doi:10.2967/jnumed.122.264306.
  • Rissel R, Renz M, Mohnke K, et al. Comparison of two porcine acute lung injury models: a post-hoc analysis. Intensive Care Med Exp. 2022;10:37.
  • Rohrs EC, Bassi TG, Nicholas M, et al. Negative-pressure-assisted ventilation lowers driving pressure and mechanical power in an ards model. J Appl Physiol (1985). 2022;133(6):1237–1249. doi:10.1152/japplphysiol.00486.2022.
  • Dickson RP, Hotchkin DL, Lamm WJE, et al. A porcine model for initial surge mechanical ventilator assessment and evaluation of two limited-function ventilators. Crit Care Med. 2011;39(3):527–532. doi:10.1097/CCM.0b013e318206b99b.
  • Judge EP, Hughes JM, Egan JJ, Maguire M, Molloy EL, O’Dea S. Anatomy and bronchoscopy of the porcine lung. a model for translational respiratory medicine. Am J Respir Cell Mol Biol. 2014;51(3):334–343. doi:10.1165/rcmb.2013-0453TR.
  • Abram J, Martini J, Spraider P, et al. Individualised flow-controlled versus pressure-controlled ventilation in a porcine oleic acid-induced acute respiratory distress syndrome model. Eur J Anaesthesiol. 2023;40(7):511–520. doi:10.1097/EJA.0000000000001807.
  • Brusatori S, Zinnato C, Busana M, et al. High- versus low-flow extracorporeal respiratory support in experimental hypoxemic acute lung injury. Am J Respir Crit Care Med. 2023;207(9):1183–1193. doi:10.1164/rccm.202212-2194OC.
  • Tohyama S, Kobayashi E. Age-appropriateness of porcine models used for cell transplantation. Cell Transplant. 2019;28(2):224–228. doi:10.1177/0963689718817477.
  • Pediatric Acute Respiratory Distress Syndrome. Consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:428–439.
  • Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–2740. doi:10.1172/JCI60331.
  • Matute-Bello G, Downey G, Moore BB, et al. An official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–738. doi:10.1165/rcmb.2009-0210ST.
  • Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: the therapeutic role of rho kinase inhibitors. Pharmacol Res. 2020;155:104736. doi:10.1016/j.phrs.2020.104736.
  • Millar JE, Bartnikowski N, von Bahr V, et al. Extracorporeal membrane oxygenation (Ecmo) and the acute respiratory distress syndrome (Ards): a systematic review of pre-clinical models. Intensive Care Med Exp. 2019;7:18.
  • Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC. Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediators Inflamm. 2015;2015:260465–260469. doi:10.1155/2015/260465.
  • Bassi TG, Rohrs EC, Fernandez MKC, et al. Diaphragm neurostimulation mitigates ventilation-associated brain injury in a preclinical acute respiratory distress syndrome model. Crit Care Explor. 2022;4(12):e0820. doi:10.1097/CCE.0000000000000820.
  • Rissel R, Gosling M, Ruemmler R, Ziebart A, Hartmann EK, Kamuf J. Bronchoalveolar lavage and oleic acid-injection in pigs as a double-hit model for acute respiratory distress syndrome (Ards). J Vis Exp. 2020.
  • Rissel R, Kirchner L, Renz M, et al. Resveratrol influences pulmonary mechanics and inflammatory response in a porcine Ards model. Life Sci. 2023;319:121410. doi:10.1016/j.lfs.2023.121410.
  • Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC. In Handbook of Lipids in Human Function. (Watson, R. R. & De Meester, F. eds.) p. 605–634. Champaign, Illinois: AOCS Press, 2016.
  • Yang R, Zhou L, Chen Z, et al. Effect and mechanical mechanism of spontaneous breathing on oxygenation and lung injury in mild or moderate animal ards. BMC Pulm Med. 2023;23(1):428. doi:10.1186/s12890-023-02730-y.
  • Osher AB, Gothe B, Simmons DH, Waymost B, Green H. Effects of continuous positive airway pressure after oleic acid-induced lung injury in dogs. Pediatr Res. 1978;12(9):923–926. doi:10.1203/00006450-197809000-00008.
  • Griffith BP, Carroll RG, Hardesty RL, Peel RL, Borovetz HS. Selected lobar injury after infusion of oleic acid. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(4):706–711. doi:10.1152/jappl.1979.47.4.706.
  • Dickey BF, Thrall RS, McCormick JR, Ward PA. Oleic-acid-induced lung injury in the rat. failure of indomethacin treatment or complement depletion to ablate lung injury. Am J Pathol. 1981;103(3):376–383.
  • Zwissler B, Forst H, Ishii K, Messmer K. A new experimental model of ards and pulmonary hypertension in the dog. Res Exp Med (Berl). 1989;189(6):427–438. doi:10.1007/BF01855010.
  • Coalson JJ, King RJ, Winter VT, et al. O2- and pneumonia-induced lung injury. I. Pathological and morphometric studies. J Appl Physiol (1985). 1989;67(1):346–356. doi:10.1152/jappl.1989.67.1.346.
  • Smith RA, Johnson M, Venus B. Does continuous positive airway pressure compensate for loss of glottic function during tracheal intubation? Crit Care Med. 1990;18(8):848–850. doi:10.1097/00003246-199008000-00011.
  • Brown BH, Flewelling R, Griffiths H, et al. Eits changes following oleic acid induced lung water. Physiol Meas. 1996;17 Suppl 4A:A117–130. doi:10.1088/0967-3334/17/4a/016.
  • Overbeck MC, Pranikoff T, Yadao CM, Hirschl RB. Efficacy of perfluorocarbon partial liquid ventilation in a large animal model of acute respiratory failure. Crit Care Med. 1996;24(7):1208–1214. doi:10.1097/00003246-199607000-00024.
  • Mutch WA, Harms S, Lefevre GR, Graham MR, Girling LG, Kowalski SE. Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med. 2000;28(7):2457–2464. doi:10.1097/00003246-200007000-00045.
  • Borges AM, Ferrari RS, Thomaz LDGR, et al. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulm Pharmacol Ther. 2019;59:101837. doi:10.1016/j.pupt.2019.101837.
  • Sum-Ping ST, Symreng T, Jebson P, Kamal GD. Stable and reproducible porcine model of acute lung injury induced by oleic acid. Crit Care Med. 1991;19(3):405–408. doi:10.1097/00003246-199103000-00021.
  • Battaglini D, Fazzini B, Silva PL, et al. Challenges in ards definition, management, and identification of effective personalized therapies. J Clin Med. 2023;12(4):1381. doi:10.3390/jcm12041381.
  • Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2(8):611–620. doi:10.1016/S2213-2600(14)70097-9.
  • Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6(9):691–698. doi:10.1016/S2213-2600(18)30177-2.
  • Hendrickson KW, Peltan ID, Brown SM. The epidemiology of acute respiratory distress syndrome before and after coronavirus disease 2019. Crit Care Clin. 2021;37(4):703–716. doi:10.1016/j.ccc.2021.05.001.
  • Spadaro S, Park M, Turrini C, et al. Biomarkers for Acute Respiratory Distress Syndrome And Prospects For Personalised Medicine. J Inflamm (Lond). 2019;16(1):1. doi:10.1186/s12950-018-0202-y.
  • Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. Ann Transl Med. 2019;7(19):505–505. doi:10.21037/atm.2019.09.29.
  • Calfee CS, Janz DR, Bernard GR, et al. Distinct molecular phenotypes of direct vs indirect ards in single-center and multicenter studies. Chest. 2015;147(6):1539–1548. doi:10.1378/chest.14-2454.
  • Sinha P, Calfee CS. Phenotypes in acute respiratory distress syndrome: moving towards precision medicine. Curr Opin Crit Care. 2019;25(1):12–20. doi:10.1097/MCC.0000000000000571.
  • Sathe NA, Morrell ED, Bhatraju PK, et al. Alveolar biomarker profiles in subphenotypes of the acute respiratory distress syndrome. Crit Care Med. 2023;51(1):e13–e18. doi:10.1097/CCM.0000000000005704.
  • Cao Y, Zhi J, Ren H, et al. Association between serum hmgb1 elevation and early pediatric acute respiratory distress syndrome: a retrospective study of pediatric living donor liver transplant recipients with biliary atresia in China. BMC Anesthesiol. 2023;23(1):87. doi:10.1186/s12871-023-02040-0.
  • Yao R-Q, Shen Z, Ma Q-M, et al. Combination of transcriptional biomarkers and clinical parameters for early prediction of sepsis indued acute respiratory distress syndrome. Front Immunol. 2022;13:1084568. doi:10.3389/fimmu.2022.1084568.
  • Perl K, Ushakov K, Pozniak Y, et al. Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genomics. 2017;18(1):305. doi:10.1186/s12864-017-3683-9.
  • Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep. 2015;5(1):10775. doi:10.1038/srep10775.
  • Nasrollahi H, Talepoor AG, Saleh Z, et al. Immune responses in mildly versus critically ill Covid-19 patients. Front Immunol. 2023;14:1077236. doi:10.3389/fimmu.2023.1077236.
  • Zhang C, Ji Y, Wang Q, Ruan L. Mir-338-3p is a biomarker in neonatal acute respiratory distress syndrome (Ards) and has roles in the inflammatory response of Ards cell models. Acta Med Okayama. 2022;76:635–643.
  • Li K, Huang Z, Tian S, et al. Microrna-877-5p alleviates Ards via enhancing Pi3k/Akt path by targeting Cdkn1b both in vivo and in vitro. Int Immunopharmacol. 2021;95:107530. doi:10.1016/j.intimp.2021.107530.
  • Wang Q, Feng Q, Zhang Y, Zhou S, Chen H. Decreased microrna 103 and microrna 107 predict increased risks of acute respiratory distress syndrome and 28-day mortality in sepsis patients. Medicine (Baltimore). 2020;99(25):e20729. doi:10.1097/MD.0000000000020729.