131
Views
2
CrossRef citations to date
0
Altmetric
Articles

Nano zinc carriers influences release kinetics of zinc and iron in a laboratory incubation experiment under Inceptisol and Alfisol

, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1968-1979 | Received 04 Nov 2019, Accepted 27 Jan 2020, Published online: 13 May 2020

References

  • Alloway, B. J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health 31 (5):537–48. doi: 10.1007/s10653-009-9255-4.
  • Aneesh, P. M., K. A. Vanaja, and M. K. Jayaraj. 2007. Synthesis of ZnO nanoparticles by hydrothermal method. Nanophotonic Materials IV, edited by Zeno Gaburro, Stefano Cabrini. Proc. SPIE. Int. Soc. Opt. Eng. 6639. https://doi.org/10.1117/12.730364.
  • Apoorva, M. R., P. C. Rao, and G. Padmaja. 2017. Effect of zinc with special reference to nano zinc carrier on yield, nutrient content and uptake by rice (Oryza sativa L.). International Journal of Current Microbiology and Applied Sciences 6 (8):1057–63. doi: 10.20546/ijcmas.2017.608.131.
  • Bingham, F. T., A. L. Page, and J. R. Sims. 1964. Retention of Cu and Zn by H-Montmorillonite. Soil Science Society of America Journal 28 (3):351. doi: 10.1097/00010694-193804000-00014.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54 (5):464–5. doi: 10.2134/agronj1962.00021962005400050028x.
  • Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59:39–45.
  • Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302 (1–2):1–17. doi: 10.1007/s11104-007-9466-3.
  • Dubey, A. K., N. Chattopadhyay, and N. Mandal. 2016. Efficacy of various Nano-Zinc source combined with Zinc mobilizer under Rice rhizosphere. MSc Thesis submitted to SSAC., BAU, Sabour, and Bhagalpur.
  • Elemike, E., I. Uzoh, D. Onwudiwe, and O. Babalola. 2019. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9 (3):499. doi: 10.3390/app9030499.
  • Fierer, N., and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103: 626–31. doi: 10.1073/pnas.0507535103.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedures for agricultural research. New York, NY: John Wiley and Sons.
  • Hall, B. D., D. Zanchet, and D. Ugarte. 2000. Estimating nanoparticle size from diffraction measurements. Journal of Applied Crystallography 33 (6):1335–132. doi: 10.1107/S0021889800010888.
  • Havlin, J. L., James, D. B., Samuel, L. T., and Werner, L. N. 2013. Soil Fertility and Fertilizers. 8th ed., pp. 121–135. India:Pearsons publication.
  • Hanway, J. J., and H. Heidel. 1952. Soil analysis methods as used in lowa state college soil testing laboratory. Iowa Agriculture 57:1–31.
  • Heggelund, L. R., M. Diez-Ortiz, S. Lofts, E. Lahive, K. Jurkschat, J. Wojnarowicz, N. Cedergreen, D. Spurgeon, and C. Svendsen. 2014. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8 (5):559–72. doi: 10.3109/17435390.2013.809808.
  • Hussain, S., M. A. Maqsood, Z. Rengel, and T. Aziz. 2012. Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil 361 (1–2):279–90. doi: 10.1007/s11104-012-1217-4.
  • Jackson, M. L. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd; pp. 121–5.
  • Jangid, B., A. Srinivas, M. R. Kumar, T. Ramprakash, T. Prasad, A. K. Kumar, S. N. Reddy, and V. K. Dida. 2019. Influence of zinc oxide nanoparticles foliar application on zinc uptake of rice (Oryza sativa L.) under different establishment methods. International Journal of Chemical Studies 7:257–61.
  • Janmohammadi, M., T. Amanzadeh, N. Sabaghnia, and V. Ion. 2016. Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica 22 (1):53–64. doi: 10.1515/botlit-2016-0005.
  • Jeffery, J., and N. Uren. 1983. Copper and zinc species in the soil solution and the effects of soil pH. Soil Research 21 (4):479–88. doi: 10.1071/SR9830479.
  • Jones, D. L., and P. R. Darrah. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil 166 (2):247–57. doi: 10.1007/BF00008338.
  • Lindsay, L. W. 1979. Chemical equilibria in soils. New York: John Wiley International Publications.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Ma, Y. B., and N. C. Uren. 2006. Effect of aging on the availability of zinc added to a calcareous clay soil. Nutrient Cycling in Agroecosystems 76 (1):11–8. doi: 10.1007/s10705-006-9036-8.
  • Mahajan, P., S. Dhoke, and A. Khanna. 2011. Effect of Nano-ZnO particle suspension on growth of Mung (Vigna radiata) and Gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology 2011:1–7. doi: 10.1155/2011/696535.
  • Mandal, N., S. C. Datta, and K. M. Manjaiah. 2015. Synthesis, characterization and controlled release study of Zn from zincated nanoclay polymer composites (ZNCPCs) in relation to equilibrium water absorbency under Zn deficient Typic Haplustepts. Annals of Plant and Soil Research 17:187–95.
  • Mandal, N., S. C. Datta, K. M. Manjaiah, B. S. Dwivedi, R. Kumar, and P. Aggarwal. 2018. Zincated Nanoclay Polymer Composites (ZNCPCs): Synthesis, characterization, biodegradation and controlled release behaviour in Soil. Polymer-Plastics Technology and Engineering 57 (17):1760–70. doi: 10.1080/03602559.2017.1422268.
  • Mandal, N., S. C. Datta, K. Manjaiah, B. Dwivedi, R. Kumar, and P. Aggarwal. 2019. Evaluation of zincated nanoclay polymer composite (ZCNPC) in releasing Zn, P and effect on soil enzyme activities in a wheat rhizosphere. European Journal of Soil Science 70 (6):1164–82. doi: 10.1111/ejss.12860.
  • Manjunatha, S. B., D. P. Biradar, and Y. R. Aladakatti. 2016. Nanotechnology and its applications in agriculture: A review. Journal of Farm Science 29:1–3.
  • Mcbride, M., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science 48 (2):337–46. doi: 10.1111/j.1365-2389.1997.tb00554.x.
  • Montalvo, D., F. Degryse, R. C. da Silva, R. Baird, and M. J. McLaughlin. 2016. Agronomic effectiveness of zinc sources as micronutrient fertilizer. Advances in Agronomy 139:215–67.
  • Naderi, M. R., and A. Danesh-Shahraki. 2013. Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences 5:2229–32.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington DC: U.S. Department of Agriculture Circular, USDA.
  • Rameshaiah, G. N., and S. Jpallavi. 2015. Nano fertilizers and nano sensors–an attempt for developing smart agriculture. International Journal of Engineering Research and General Science 3:314–20.
  • Richard, L. A. 1954. Diagnosis and improvement of saline and alkaline soils. Washington, DC: Agriculture Hand book 60; pp: 160.
  • Roy, T., D. R. Biswas, S. C. Datta, and A. Sarkar. 2016. Phosphorus release from rock phosphate as influenced by organic acid loaded nanoclay polymer composites in an alfisol. Proceedings of the National Academy of Science, India, Section Biological Science. doi: 10.1007/s40011-016-0739-6.
  • Sauve, S., W. Hendershot, and H. E. Allen. 2000. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environmental Science & Technology 34 (7):1125–31. doi: 10.1021/es9907764.
  • Singh, A. P., R. R. J. Singh, and P. Ghanshyam. 2006. Laboratory manual for soil- plant-water analysis. Published by Department of Soil Sci & Agril Chem, RAU, Pusa, Samastipur, India; pp. 110–32.
  • Subbiah, B. V., and G. L. Asija. 1956. A rapid procedure for the estimation of available nitrogen in soil. Current Science 25:259–60.
  • Waalewijn-Kool, P. L., M. D. Ortiz, S. Lofts, and C. A. M. van Gestel. 2013. The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environmental Toxicology and Chemistry 32 (10):2349–55. doi: 10.1002/etc.2302.
  • Walkley, A. J., and C. A. Black. 1934. An estimation of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29–38. doi: 10.1097/00010694-193401000-00003.
  • Wisawapipat, W., Y. Janlaksana, and I. Christl. 2017. Zinc solubility in tropical paddy soils: A multi-chemical extraction technique study. Geoderma 301:1–10. doi: 10.1016/j.geoderma.2017.04.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.