95
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The use of destructive and nondestructive techniques in concrete nitrogen assessment in plants

, , , , , , , & show all
Received 19 Sep 2023, Accepted 03 Apr 2024, Published online: 18 Apr 2024

References

  • Agati, G., M. L. Traversi, and Z. G. Cerovic. 2008. Chlorophyll fluorescence imaging for the non-invasive assessment of anthocyanins in whole grape (Vitis vinifera L.) bunches. Photochemistry and Photobiology 84 (6):1431–4. doi: 10.1111/j.1751-1097.2008.00424.x.
  • Ali, M. M., A. Al-Ani, D. Eamus, and D. K. Tan. 2016. Leaf nitrogen determination using non-destructive techniques–a review. Journal of Plant Nutrition 40 (7):928–53. doi: 10.1080/01904167.2016.1143954.
  • Amaral, L. R., J. P. Molin, G. Portz, F. B. Finazzi, and L. Cortinove. 2015. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture 16 (1):15–28. doi: 10.1007/s11119-014-9377-2.
  • AOAC Official Method. 2012. Nitrogen in meat – Kjeldahl method. 19th ed., Vol. II 928.08, Chapter 39, 5–6. https://www.scribd.com/document/567461580/AOAC-928-08-Proteina-en-carnicos.
  • Ata-Ul-Karim, S. T., X. Liu, Z. Lu, Z. Yuan, Y. Zhu, and W. Cao. 2016. In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Research 195:1–8. doi: 10.1016/j.fcr.2016.04.027.
  • Ata-Ul-Karim, S. T., X. Yao, X. Liu, W. Cao, and Y. Zhu. 2013. Development of critical nitrogen dilution curve of japonica rice in Yangtze River reaches. Field Crops Research 149:149–58. doi: 10.1016/j.fcr.2013.03.012.
  • Ata-Ul-Karim, S. T., Y. Zhu, X. Yao, and W. Cao. 2014. Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crops Research 167:76–85. doi: 10.1016/j.fcr.2014.07.010.
  • Baillie, C. P., J. A. Thomasson, C. R. Lobsey, C. L. McCarthy, and D. L. Antille. 2018. A review of the state of the art in agricultural automation. Part I: Sensing technologies for optimization of machine operation and farm inputs. ASABE Annual International Meeting 1. doi: 10.13031/aim.201801589.
  • Barton, L., and T. D. Colmer. 2006. Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass. Agricultural Water Management 80 (1–3):160–75. doi: 10.1016/j.agwat.2005.07.011.
  • Beljkaš, B., J. Matić, I. Milovanović, P. Jovanov, A. Mišan, and L. Šarić. 2010. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accreditation and Quality Assurance 15 (10):555–61. doi: 10.1007/s00769-010-0677-6.
  • Bongiovanni, R., and J. Lowenberg-Deboer. 2004. Precision Agriculture and Sustainability. Precision Agriculture 5 (4):359–87. doi: 10.1023/B:PRAG.0000040806.39604.aa.
  • Cao, Q., Y. Miao, G. Feng, X. Gao, F. Li, B. Liu, S. Yue, S. Cheng, S. L. Ustin, and R. Khosla. 2015. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture 112:54–67. doi: 10.1016/j.compag.2014.08.012.
  • Cao, Q., Y. Miao, J. Shen, F. Yuan, S. Cheng, and Z. Cui. 2018. Evaluating two crop circle active canopy sensors for in-season diagnosis of winter wheat nitrogen status. Agronomy 8 (10):201. doi: 10.3390/agronomy8100201.
  • Cartelat, A., Z. G. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J. L. Prioul, A. Barbottin, M. H. Jeuffroy, P. Gate, G. Agati, et al. 2005. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research 91 (1):35–49. doi: 10.1016/j.fcr.2004.05.002.
  • Cerovic, Z. G., A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya. 2002. The use of chlorophyll fluorescence excitation spectra for the nondestructive in situ assessment of UV–absorbing compounds in leaves. Plant, Cell & Environment 25 (12):1663–76. doi: 10.1046/j.1365-3040.2002.00942.x.
  • Chen, Z., X. Wang, and S. Sun. 2022. Estimating the total nitrogen content of Aquilaria sinensis leaves based on a hybrid feature selection algorithm and image data from a modified digital camera. Biosystems Engineering 213:89–104. doi: 10.1016/j.biosystemseng.2021.11.021.
  • Chowdhury, M., R. Anand, T. Dhar, R. Kurmi, R. K. Sahni, and A. Kushwah. 2024. Digital insights into plant health: Exploring vegetation indices through computer vision. In Applications of Computer Vision and Drone Technology in Agriculture 4.0, ed. S. S. Chouhan, U. P. Singh, and S. Jain, 7–30. Singapore: Springer. doi: 10.1007/978-981-99-8684-2_2.
  • Chowdhury, M., A. Kushwah, A. N. Satpute, S. K. Singh, and A. K. Patil. 2023. A comprehensive review on potential application of nanomaterials in the field of agricultural engineering. Journal of Biosystems Engineering 48 (4):457–77. doi: 10.1007/s42853-023-00204-x.
  • Chowdhury, M., S. D. Lande, T. K. Khura, R. A. Parray, P. K. Upadhyay, and P. Kumar. 2023. Energetics and cost economics of wheat–based cropping system. Annals of Agricultural Research 44 (1):37–45.
  • Chowdhury, M., E. V. Thomas, A. Jha, A. Kushwah, R. Kurmi, T. K. Khura, P. Sarkar, and K. Patra. 2023. An automatic pressure control system for precise spray pattern analysis on spray patternator. Computers and Electronics in Agriculture 214:108287. doi: 10.1016/j.compag.2023.108287.
  • Chowdhury, M., T. K. Khura, P. K. Upadhyay, R. A. Parray, H. L. Kushwaha, C. Singh, A. Lama, and I. Mani. 2024. Assessing vegetation indices and productivity across nitrogen gradients: A comparative study under transplanted and direct-seeded rice. Frontiers in Sustainable Food Systems 8:1351414. doi: 10.3389/fsufs.2024.1351414.
  • Demotes-Mainard, S., R. Boumaza, S. Meyer, and Z. G. Cerovic. 2008. Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Scientia Horticulturae 115 (4):377–85. doi: 10.1016/j.scienta.2007.10.006.
  • Djaman, K., V. C. Mel, F. Y. Ametonou, R. El-Namaky, M. D. Diallo, and K. Koudahe. 2018. Effect of nitrogen fertilizer dose and application timing on yield and nitrogen use efficiency of irrigated hybrid rice under semi-arid conditions. Journal of Agricultural Science and Food Research 9:223.
  • Domini, C., L. Vidal, G. Cravotto, and A. Canals. 2009. A simultaneous, direct microwave/ultrasound assisted digestion procedure for the determination of total Kjeldahl nitrogen. Ultrasonics Sonochemistry 16 (4):564–9. doi: 10.1016/j.ultsonch.2008.12.006.
  • Dong, T., J. Shang, J. M. Chen, J. Liu, B. Qian, B. Ma, M. J. Morrison, C. Zhang, Y. Liu, Y. Shi, et al. 2019. Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing 11 (22):2706. doi: 10.3390/rs11222706.
  • Dumas, J. B. A. 1831. Organic analysis methods. Annals of Chemistry and Physics 247:198–213.
  • Eitel, J. U. H., R. F. Keefe, D. S. Long, A. S. Davis, and L. A. Vierling. 2010. Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors 10 (4):2843–50. doi: 10.3390/s100402843.
  • Erdle, K., B. Mistele, and U. Schmidhalter. 2011. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research 124 (1):74–84. doi: 10.1016/j.fcr.2011.06.007.
  • Esfahani, M., H. R. A. Abbasi, B. Rabiei, and M. Kavousi. 2008. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD). Paddy and Water Environment 6 (2):181–8. doi: 10.1007/s10333-007-0094-6.
  • FAO. 2020. Chapter 2. The fertilizer sector – fertilizer use by crop in India. https://www.fao.org/3/a0257e/A0257E03.htm.
  • Feiffer, A., J. Jasper, P. Leithold, and P. Feiffer. 2007. Effects of N-sensor based variable rate N fertilization on combine harvest. In Precision agriculture’07’. Proceedings of the 6th European Conference on Precision Agriculture, eds J. V. Stafford, 673–9. Wageningen, The Netherlands: Wageningen Academic Publishers.
  • Fischer, G., W. Winiwarter, T. Ermolieva, G.-Y. Cao, H. Qui, Z. Klimont, D. Wiberg, and F. Wagner. 2010. Integrated modelling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China. Agriculture, Ecosystem & Environment 136 (1–2):116–24. doi: 10.1016/j.agee.2009.12.004.
  • FSSAI. 2015. Manual of methods of analysis of foods - meat and meat products & fish and fish products, 1–80. New Delhi: Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, Government of India. https://www.academia.edu/14060121/MANUAL_OF_METHODS_OF_ANALYSIS_OF_FOODS_FOOD_SAFETY_AND_STANDARDS_AUTHORITY_OF_INDIA_MINISTRY_OF_HEALTH_AND_FAMILY_WELFARE_GOVERNMENT_OF_INDIA_NEW_DELHI_2015.
  • Gawande, V., D. R. K. Saikanth, B. S. Sumithra, S. A. Aravind, G. N. Swamy, M. Chowdhury, and B. V. Singh. 2023. Potential of precision farming technologies for eco-friendly agriculture. International Journal of Plant & Soil Science 35 (19):101–12. doi: 10.9734/ijpss/2023/v35i193528.
  • Gitelson, A. A., A. Viña, V. Ciganda, D. C. Rundquist, and T. J. Arkebauer. 2005. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters 32 (8):L08403. doi: 10.1029/2005GL022688.
  • Guddaraddi, A., Singh, A., Amrutha, G., Saikanth, D. R. K., Kurmi, R., Singh, G., Chowdhury, M., and Singh, B. V. 2023. Sustainable biofuel production from agricultural residues an eco-friendly approach: A review. International Journal of Environment and Climate Change 13(10):2905–14. doi: 10.9734/ijecc/2023/v13i102956.
  • Guyot, G., F. Baret, and D. J. Major. 1988. High spectral resolution: Determination of spectral shifts between the red and infrared. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 11:750–60.
  • Haider, T., M. S. Farid, R. Mahmood, A. Ilyas, M. H. Khan, S. T. A. Haider, M. H. Chaudhry, and M. Gul. 2021. A computer-vision-based approach for nitrogen content estimation in plant leaves. Agriculture 11 (8):766. doi: 10.3390/agriculture11080766.
  • Hamidisepehr, A., M. P. Sama, J. S. Dvorak, O. O. Wendroth, and M. D. Montross. 2020. Classifying reflectance targets under ambient light conditions using passive spectral measurements. Sensors 20 (18):5375. doi: 10.3390/s20185375.
  • Hassanijalilian, O., C. Igathinathane, C. Doetkott, S. Bajwa, J. Nowatzki, and S. A. H. Esmaeili. 2020. Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning. Computers and Electronics in Agriculture 174:105433. doi: 10.1016/j.compag.2020.105433.
  • Heiß, A., D. S. Paraforos, G. M. Sharipov, and H. W. Griepentrog. 2020. Modelling and simulation of a fuzzy system for site-specific nitrogen fertilization. IFAC-PapersOnLine 53 (2):15790–5. doi: 10.1016/j.ifacol.2020.12.208.
  • Hu, Y., J. P. Yang, Y. M. Lv, and J. J. He. 2014. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Production Science 17 (1):81–92. doi: 10.1626/pps.17.81.
  • Huang, S., Y. Miao, G. Zhao, F. Yuan, X. Ma, C. Tan, W. Yu, M. L. Gnyp, V. I. Lenz-Wiedemann, U. Rascher, et al. 2015. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sensing 7 (8):10646–67. doi: 10.3390/rs70810646.
  • IRRI. 1996. Use of leaf color chart (LCC) for N management in rice. Philippines: Crop and Resource Management Network Technology (Brief No. 1. IRRI).
  • Jha, A., M. Chowdhury, and A. N. Satpute. 2023. Surface water quality forecasting using machine learning approach. In Surface and groundwater resources development and management in semi-arid region, Springer hydrogeology, ed. C. B. Pande, M. Kumar, and N. L. Kushwaha. Cham: Springer.
  • Jones, D. 2004. Remote detection of wheat streak mosaic and nitrogen deficiency and their effects on hard red winter wheat. Canyon, TX: West Texas A&M University.
  • Jung, S., D. A. Rickert, N. A. Deak, E. D. Aldin, J. Recknor, L. A. Johnson, and P. A. Murphy. 2003. Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products. Journal of American Oil Chemists’ Society 80:1169–73. doi: 10.1007/s11746-003-0837-3.
  • Kalra, Y. P. 1998. Hand book of reference methods for plant analysis, 75–92. Boca Raton, FL, USA: CRC Press.
  • Kjeldahl, J. 1883. New method for determining nitrogen in organic bodies. Fresenius’ Zeitschrift Für Analytische Chemie 22 (1):366–82. doi: 10.1007/BF01338151.
  • Knyazikhin, Y., M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, et al. 2013. Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences 110 (3):E185–92. doi: 10.1073/pnas.1210196109.
  • Kumari, A., Ashoka, P., Tiwari, P., Sachan, P., Malla, A. K., Tripathy, A., and Chowdhury, M. 2023. Zero tillage lead to enhanced productivity and soil health. International Journal of Environment and Climate Change 13(10):3707–3715. doi: 10.9734/ijecc/2023/v13i103042.
  • Kurmi, R., S. D. Lande, J. Kurmi, M. Chowdhury, C. Singh, and P. Kumar. 2023. Comparative study on carbon footprint assessment of rice-wheat production system. International Journal of Environment and Climate Change 13 (11):390–8. doi: 10.9734/ijecc/2023/v13i113182.
  • Kushwah, A., A. Chouriya, V. K. Tewari, C. Gupta, M. Chowdhury, P. Shrivastava, and P. Bhagat. 2024. A novel embedded system for tractor implement performance mapping. Cogent Engineering 11 (1):2311093. doi: 10.1080/23311916.2024.2311093.
  • Kushwah, A., P. K. Sharma, H. L. Kushwaha, R. H. Nag, G. Carpenter, M. K. Choudhary, M. Chowdhury, A. Pandey, and S. Chaudhary. 2024. Economic evaluation of precise intelligent cauliflower harvester: a comparative study with manual harvesting. Journal of Scientific Research and Reports 30 (1):33–42. doi: 0.9734/jsrr/2024/v30i11822 doi: 10.9734/jsrr/2024/v30i11822.
  • Kushwah, A., P. K. Sharma, H. L. Kushwaha, B. B. Sharma, G. Carpenter, R. H. Nag, R. Yadav, and M. Chowdhury. 2023. Innovative selective harvesting technology for cauliflower: A design approach using plant characteristics. Environment and Ecology 41 (4B):2595–601. doi: 10.60151/envec/JMNF4522.
  • Kushwah, A., R. Yadav, M. Chowdhury, R. H. Nag, and G. Carpenter. 2023. Harnessing innovation: Arduino and raspberry Pi in agricultural engineering. The Science World a Monthly e Magazine 3:2897–901. doi: 10.5281/zenodo.10141945.
  • Labconco, C. A. 1998. Guide to Kjeldahl nitrogen determination methods and apparatus. Houston, TX, USA: Labconco Corporation.
  • Ladha, J. K., J. S. Bains, R. K. Gupta, V. Balasubramanian, Yadvinder-Singh, Bijay-Singh, Jagmohan-Singh. 2007. On-farm evaluation of leaf color chart for need-based nitrogen management in irrigated transplanted rice in north western India. Nutrient Cycling in Agroecosystems, 78(2):167–76. doi: 10.1007/s10705-006-9082-2.
  • Ladha, J. K., H. Pathak, T. J. Krupnik, J. Six, and K. C. Van. 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy 87:85–156. doi: 10.1016/S0065-2113(05)87003-8.
  • Lejealle, S., S. Evain, and Z. G. Cerovic. 2010. Multiplex: A new diagnostic tool for management of nitrogen fertilization of turfgrass. In Proceedings of the 10th International Conference on Precision Agriculture, Denver, CO, USA, 18–21.
  • Li, Y., D. Chen, C. N. Walker, and J. F. Angus. 2010. Estimating the nitrogen status of crops using a digital camera. Field Crops Research 118 (3):221–7. doi: 10.1016/j.fcr.2010.05.011.
  • Lin, F. F., L. F. Qiu, J. S. Deng, Y. Y. Shi, L. S. Chen, and K. Wang. 2010. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture 71:S60–S5. doi: 10.1016/j.compag.2009.09.006.
  • Ling, Q., W. Huang, and P. Jarvis. 2011. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research 107 (2):209–14. doi: 10.1007/s11120-010-9606-0.
  • Link, A., and S. Reusch. 2006. Implementation of site-specific nitrogen application-status and development of the YARA N-Sensor. Nordic Association of Agricultural Scientists 390:37–41.
  • Mayfield, A. H., and S. P. Trengove. 2009. Grain yield and protein responses in wheat using the N-Sensor for variable rate N application. Crop and Pasture Science 60 (9):818–23. doi: 10.1071/CP08344.
  • McClements, J. D. 2003. Analysis of food products, analysis of proteins, food science, 581. Amherst: University of Massachusetts, Chenoweth Lab.
  • Mezera, J., V. Lukas, J. Elbl, and V. Smutný. 2019. Comparison of Sentinel-2 and ISARIA winter wheat mapping for variable rate application of nitrogen fertilizers. MendelNet 26:48–53.
  • Miao, Y., D. J. Mulla, G. W. Randall, J. A. Vetsch, and R. Vintila. 2009. Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precision Agriculture 10 (1):45–62. doi: 10.1007/s11119-008-9091-z.
  • Michałowski, T., A. G. Asuero, and S. Wybraniec. 2013. The titration in the kjeldahl method of nitrogen determination: Base or acid as titrant? Journal of Chemical Education 90 (2):191–7. doi: 10.1021/ed200863p.
  • Mihaljev, Ž. A., S. M. Jakšić, N. B. Prica, Ž. N. Ćupić, and M. M. Živkov-Baloš. 2015. Comparison of the Kjeldahl method, Dumas method and NIR method for total nitrogen determination in meat and meat products. Journal of Agroalimentary Processes and Technologies 21:365–70.
  • Mirzakhaninafchi, H., M. Singh, V. Bector, O. P. Gupta, and R. Singh. 2021. Design and development of a variable rate applicator for real-time application of fertilizer. Sustainability 13 (16):8694. doi: 10.3390/su13168694.
  • Monje, O. A., and B. Bugbee. 1992. Inherent limitations of nondestructive chlorophyll meters: A comparison of two types of meters. HortScience 27 (1):69–71. doi: 10.21273/HORTSCI.27.1.69.
  • Mullen, R. W., K. W. Freeman, W. R. Raun, G. V. Johnson, M. L. Stone, and J. B. Solie. 2003. Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agronomy Journal 95 (2):347–51. doi: 10.2134/agronj2003.3470.
  • Muñoz-Huerta, R., R. Guevara-Gonzalez, L. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 13 (8):10823–43. doi: 10.3390/s130810823.
  • Nguy-Robertson, A., Y. Peng, T. Arkebauer, D. Scoby, J. Schepers, and A. Gitelson. 2015. Using a simple leaf color chart to estimate leaf and canopy chlorophyll a content in maize (Zea Mays). Communications in Soil Science and Plant Analysis 46 (21):2734–45. doi: 10.1080/00103624.2015.1093639.
  • Parry, C., J. M. Blonquist, Jr, and B. Bugbee. 2014. In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant, Cell & Environment 37 (11):2508–20. doi: 10.1111/pce.12324.
  • Patra, K., C. M. Parihar, H. S. Nayak, B. Rana, D. R. Sena, A. Anand, K. S. Reddy, M. Chowdhury, R. Pandey, A. Kumar, et al. 2023. Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize. Agricultural Water Management 283:108308. doi: 10.1016/j.agwat.2023.108308.
  • Pei, W., Y. Lan, L. Xiwen, Z. Zhiyan, Z. Wang, and Y. Wang. 2014. Integrated sensor system for monitoring rice growth conditions based on unmanned ground vehicle system. International Journal of Agricultural and Biological Engineering 7:75. doi: 10.3965/j.ijabe.20140702.009.
  • Peteinatos, G. G., A. Korsaeth, T. W. Berge, and R. Gerhards. 2016. Using optical sensors to identify water deprivation, nitrogen shortage, weed presence and fungal infection in wheat. Agriculture 6 (2):24. doi: 10.3390/agriculture6020024.
  • Portz, G., J. P. Molin, and J. Jasper. 2012. Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture 13 (1):33–44. doi: 10.1007/s11119-011-9243-4.
  • Raun, W. R., J. B. Solie, G. V. Johnson, M. L. Stone, R. W. Mullen, K. W. Freeman, W. E. Thomason, and E. V. Lukina. 2002. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal 94 (4):815–20. doi: 10.2134/agronj2002.8150.
  • Reusch, S. 2003. Optimisation of oblique-view remote measurement of crop N uptake under changing irradiance conditions. In Precision agriculture: Papers from the 4th European Conference on Precision Agriculture, ed. J. Stafford and A. Werner, 573–78. Berlin, Germany: Wageningen Academic Publishers.
  • Reusch, S. 2005. Optimum waveband selection for determining the nitrogen uptake in winter wheat by active remote sensing. In Precision agriculture’05. Papers presented at the 5th European Conference on Precision Agriculture, ed. J. V. Stafford, 261–66. Uppsala, Sweden: Wageningen Academic Publishers.
  • Reusch, S., J. Jasper, and A. Link. 2010. Estimating crop biomass and nitrogen uptake using CropSpec TM, a newly developed active crop-canopy reflectance sensor. In 10th International Conference on Precision Agriculture, 18–21. Denver, Colorado, USA: Wageningen Academic Publishers.
  • Sáez-Plaza, P., T. Michałowski, M. J. Navas, A. G. Asuero, and S. Wybraniec. 2013a. An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Critical Reviews in Analytical Chemistry 43 (4):178–223. doi: 10.1080/10408347.2012.751786.
  • Sáez-Plaza, P., M. J. Navas, S. Wybraniec, T. Michałowski, and A. G. Asuero. 2013b. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Critical Reviews in Analytical Chemistry 43 (4):224–72. doi: 10.1080/10408347.2012.751787.
  • Saha, P., H. Nayak, A. Barman, A. Bera, and P. Banerjee. 2022. Nitrogen management by small farmers with the use of leaf color chart: A review. Journal of Plant Nutrition 46 (8):1836–44. doi: 10.1080/01904167.2022.2144370.
  • Saha, U. K., L. Sonon, and D. E. Kissel. 2012. Comparison of conductimetric and colorimetric methods with distillation-titration method of analyzing ammonium-nitrogen in total Kjeldahl Digests. Communications in Soil Science and Plant Analysis 43 (18):2323–41. doi: 10.1080/00103624.2012.708081.
  • Sahoo, R. N., S. Gakhar, R. G. Rejith, R. Ranjan, M. C. Meena, A. Dey, J. Mukherjee, R. Dhakar, S. Arya, A. Daas, S. Babu. 2023. Unmanned Aerial Vehicle (UAV)–based imaging spectroscopy for predicting wheat leaf nitrogen. Photogrammetric Engineering & Remote Sensing 89(2):107–116. doi: 10.14358/PERS.22-00089R2.
  • Sahoo, R. N., R. G. Rejith, S. Gakhar, R. Ranjan, M. C. Meena, A. Dey, J. Mukherjee, R. Dhakar, A. Meena, A. Daas, et al. 2024. Drone remote sensing of wheat N using hyperspectral sensor and machine learning. Precision Agriculture 25 (2):704–28. doi: 10.1007/s11119-023-10089-7.
  • Saint-Denis, T., and J. Goupy. 2004. Optimization of a nitrogen analyser based on the Dumas method. Analytica Chimica Acta 515 (1):191–8. doi: 10.1016/j.aca.2003.10.090.
  • Saito, K., S. Diack, I. Dieng, and M. K. N’Diaye. 2015. On-farm testing of a nutrient management decision-support tool for rice in the Senegal River valley. Computers and Electronics in Agriculture 116:36–44. doi: 10.1016/j.compag.2015.06.008.
  • Samborski, S. M., N. Tremblay, and E. Fallon. 2009. Strategies to make use of plant sensors‐based diagnostic information for nitrogen recommendations. Agronomy Journal 101 (4):800–16. doi: 10.2134/agronj2008.0162Rx.
  • Savci, S. 2012. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1:287–92. doi: 10.1016/j.apcbee.2012.03.047.
  • Sayeed, M. A., G. Shashikala, S. Pandey, R. Jain, and S. N. Kumar. 2016. Estimation of nitrogen in rice plant using image processing and artificial neural networks. Imperial Journal of Interdisciplinary Research 2:1074–9.
  • Serrano, J., S. Shahidian, and J. Da. Silva, Marques. 2020. Evaluation of the NDVI as indicator of pasture quality degradation index–an exploratory study in Mediterranean Montado ecosystem. Journal of Agriculture and Food Development 6:31–41.
  • Sharabian, V. R., N. Noguchi, I. Han-Ya, and K. Ishi. 2013. Evaluation of an active remote sensor for monitoring winter wheat growth status. Engineering in Agriculture, Environment and Food 6 (3):118–27. doi: 10.1016/S1881-8366(13)80021-3.
  • Shaver, T. M., R. Khosla, and D. G. Westfall. 2010. Evaluation of two ground-based active crop canopy sensors in maize: Growth stage, row spacing, and sensor movement speed. Soil Science Society of America Journal 74 (6):2101–8. doi: 10.2136/sssaj2009.0421.
  • Shi, W., J. Lu, Y. Miao, Q. Cao, J. Shen, H. Wang, X. Hu, S. Hu, W. Yang, and H. Li. 2015. Evaluating a crop circle active canopy sensor-based precision nitrogen management strategy for rice in Northeast China. 2015 Fourth International Conference on Agro-Geoinformatics, 261–264, IEEE.
  • Sinfield, J. V., D. Fagerman, and O. Colic. 2010. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture 70 (1):1–18. doi: 10.1016/j.compag.2009.09.017.
  • Singh, M., R. Kumar, A. Sharma, B. Singh, and S. K. Thind. 2015. Calibration and algorithm development for estimation of nitrogen in wheat crop using tractor mounted N-sensor. TheScientificWorldJournal 2015:163968. doi: 10.1155/2015/163968.
  • Singh, V., B. Singh, Y. Singh, H. S. Thind, and R. K. Gupta. 2010. Need based nitrogen management using the chlorophyll meter and leaf colour chart in rice and wheat in South Asia: A review. Nutrient Cycling in Agroecosystems, 88 (3):361–80. doi: 10.1007/s10705-010-9363-7.
  • Sivarajan, S., M. Maharlooei, H. Kandel, R. R. Buetow, J. Nowatzki, and S. G. Bajwa. 2020. Evaluation of OptRx™ active optical sensor to monitor soybean response to nitrogen inputs. Journal of the Science of Food and Agriculture 100 (1):154–60. doi: 10.1002/jsfa.10008.
  • Smil, V. 1999. Nitrogen in crop production: An account of global flows. Global Biogeochemical Cycles 13 (2):647–62. doi: 10.1029/1999GB900015.
  • Söderström, M., K. Nissen, K. Gustafsson, T. Börjesson, A. Jonsson, and L. Wijkmark. 2004. Swedish farmers’ experiences of the Yara N-sensor 1998-2003. In Proceedings of the 7th International Conference on Precision Agriculture and other Precision Resources Management, Minneapolis, USA.
  • Sui, R., J. B. Wilkerson, W. E. Hart, L. R. Wilhelm, and D. D. Howard. 2005. Multi-spectral sensor for detection of nitrogen status in cotton. Applied Engineering in Agriculture 21:167–72. doi: 10.13031/2013.18148.
  • Tewari, V. K., A. K. Arudra, S. P. Kumar, V. Pandey, and N. S. Chandel. 2013. Estimation of plant nitrogen content using digital image processing. Agricultural Engineering International 15:78–86.
  • Trajković, J., M. Mirić, J. Baras, and S. Šiler. 1983. Determination of proteins, analyses of foodstuffs, 73–82. University of Belgrade, Faculty of Technology and Metallurgy.
  • Tremblay, N., Z. Wang, B. L. Ma, C. Belec, and P. Vigneault. 2009. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precision Agriculture 10 (2):145–61. doi: 10.1007/s11119-008-9080-2.
  • Uddling, J., J. Gelang-Alfredsson, K. Piikki, and H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research 91 (1):37–46. doi: 10.1007/s11120-006-9077-5.
  • Unkovich, M., D. Herridge, M. Peoples, G. Cadisch, B. Boddey, K. Giller, B. Alves, and P. Chalk. 2008. Measuring plant-associated nitrogen fixation in agricultural systems, 45–62. Canberra, ACT, Australia: Australian Centre for International Agricultural Research (ACIAR).
  • Ur Rahim, H., M. Qaswar, M. Uddin, C. Giannini, M. L. Herrera, and G. Rea. 2021. Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials 11 (8):2068. doi: 10.3390/nano11082068.
  • Uzhu, H., W. Xiaomei, and S. Shuyao. 2011. Nitrogen determination in pepper (Capsicum frutescens L.) plants by color image analysis (RGB). African Journal of Biotechnology 10:17737–41. doi: 10.5897/AJB11.1974.
  • Van Loon, J., A. B. Speratti, L. Gabarra, and B. Govaerts. 2018. Precision for smallholder farmers: A small-scale-tailored variable rate fertilizer application kit. Agriculture 8 (4):48. doi: 10.3390/agriculture8040048.
  • Varvel, G. E., J. S. Schepers, and D. D. Francis. 1997. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Science Society of America Journal 61 (4):1233–9. doi: 10.2136/sssaj1997.03615995006100040032x.
  • Vigneau, N., M. Ecarnot, G. Rabatel, and P. Roumet. 2011. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crops Research 122 (1):25–31. doi: 10.1016/j.fcr.2011.02.003.
  • Wang, S., Y. Zhu, H. Jiang, and W. Cao. 2006. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Research 96 (2–3):224–34. doi: 10.1016/j.fcr.2005.07.008.
  • Wang, Y., D. Wang, P. Shi, and K. Omasa. 2014s. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 10 (1):36. doi: 10.1186/1746-4811-10-36.
  • Wang, Y., S. Zia, S. Owusu-Adu, R. Gerhards, and J. Müller. 2014. Early detection of fungal diseases in winter wheat by multi-optical sensors. APCBEE Procedia 8:199–203. doi: 10.1016/j.apcbee.2014.03.027.
  • Watson, M. E., and T. L. Galliher. 2001. Comparison of Dumas and Kjeldahl methods with automatic analyzers on agricultural samples under routine rapid analysis conditions. Communications in Soil Science and Plant Analysis 32 (13–14):2007–19. doi: 10.1081/CSS-120000265.
  • Williams, J. D., N. R. Kitchen, P. C. Scharf, and W. E. Stevens. 2010. Within-field nitrogen response in corn related to aerial photograph color. Precision Agriculture 11 (3):291–305. doi: 10.1007/s11119-009-9137-x.
  • Witt, C., J. M. C. A. Pasuquin, R. Mutters, and R. J. Buresh. 2005. New leaf color chart for effective nitrogen management in rice. Better Crops 89:36–9.
  • Worley, S. 2015. What is OptRx? https://www.agleader.com/blog/what-is-optrx/?locale=en.
  • Yao, Y., Y. Miao, S. Huang, L. Gao, X. Ma, G. Zhao, R. Jiang, X. Chen, F. Zhang, K. Yu, et al. 2012. Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development 32 (4):925–33. doi: 10.1007/s13593-012-0094-9.
  • Yu, Z. H. A. O., J. W. Wang, L. P. Chen, Y. Y. Fu, H. C. Zhu, H. K. Feng, X. G. Xu, and Z. H. Li. 2021. An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat. Journal of Integrative Agriculture 20 (9):2535–51. doi: 10.1016/S2095-3119(20)63379-2.
  • Yuan, Z., Q. Cao, K. Zhang, S. T. Ata-Ul-Karim, Y. Tian, Y. Zhu, W. Cao, and X. Liu. 2016. Optimal leaf positions for SPAD meter measurement in rice. Frontiers in Plant Science 7:719. doi: 10.3389/fpls.2016.00719.
  • Yule, I., J. Mackenzie, M. Killick, and C. Mackenzie. 2011. A comparison of crop sensor systems for informing fertilizer placement. In Adding to the knowledge base for the nutrient manager, ed. L. D. Currie and C. L. Christensen, 1–7. Palmerston North, New Zealand: Fertilizer and Lime Research Centre, Massey University.
  • Zillmann, E., S. Graeff, J. Link, W. D. Batchelor, and W. Claupein. 2006. Assessment of cereal nitrogen requirements derived by optical on‐the‐go sensors on heterogeneous soils. Agronomy Journal 98 (3):682–90. doi: 10.2134/agronj2005.0253.
  • Zinkevičius, R. 2020. The use of crop sensors for precise fertilization. Agricultural Sciences 27:165–74. doi: 10.6001/zemesukiomokslai.v27i4.4387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.