284
Views
5
CrossRef citations to date
0
Altmetric
Articles

Lipid-based formulations of microemulsion-loaded oleogels for the oral delivery of carvedilol

ORCID Icon, , ORCID Icon &
Pages 708-718 | Received 08 Feb 2021, Accepted 31 Jul 2021, Published online: 23 Aug 2021

References

  • Rehsia, N. S.; Dhalla, N. S. Mechanisms of the Beneficial Effects of Beta-Adrenoceptor Antagonists in Congestive Heart Failure. Exp. Clin. Cardiol. 2010, 15, e86–e95.
  • Tsume, Y.; Mudie, D. M.; Langguth, P.; Amidon, G. E.; Amidon, G. L. The Biopharmaceutics Classification System: Subclasses for In Vivo Predictive Dissolution (IPD) Methodology and IVIVC. Eur. J. Pharm. Sci. 2014, 57, 152–163. DOI: 10.1016/j.ejps.2014.01.009.
  • Hamed, R.; Awadallah, A.; Sunoqrot, S.; Tarawneh, O.; Nazzal, S.; AlBaraghthi, T.; Al Sayyad, J.; Abbas, A. pH-Dependent Solubility and Dissolution Behavior of Carvedilol-Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech 2016, 17, 418–426. DOI: 10.1208/s12249-015-0365-2.
  • Al-Ghamdi, H. Carvedilol in the Treatment of Portal Hypertension. Saudi J. Gastroenterol. 2011, 17, 155–158. DOI: 10.4103/1319-3767.77251.
  • Markovic, M.; Zur, M.; Fine-Shamir, N.; Haimov, E.; González-Álvarez, I.; Dahan, A. Segmental-Dependent Solubility and Permeability as Key Factors Guiding Controlled Release Drug Product Development. Pharmaceutics 2020, 12, 295. DOI: 10.3390/pharmaceutics12030295.
  • Ruffolo, R. R.; Boyle, D. A.; Brooks, D. P.; Feuerstein, G. Z.; Venuti, R. P.; Lukas, M. A.; Poste, G. Carvedilol: A Novel Cardiovascular Drug with Multiple Actions. Cardiovasc. Drug Rev. 1992, 10, 127–157. DOI: 10.1111/j.1527-3466.1992.tb00242.x.
  • Khoo, S.-M.; Humberstone, A. J.; Porter, C. J.; Edwards, G. A.; Charman, W. N. Formulation Design and Bioavailability Assessment of Lipidic Self-Emulsifying Formulations of Halofantrine. Int. J. Pharm. 1998, 167, 155–164. DOI: 10.1016/S0378-5173(98)00054-4.
  • Wei, L.; Sun, P.; Nie, S.; Pan, W. Preparation and Evaluation of SEDDS and SMEDDS Containing Carvedilol. Drug Dev. Ind. Pharm. 2005, 31, 785–794. DOI: 10.1080/03639040500216428.
  • Jannin, V.; Chevrier, S.; Michenaud, M.; Dumont, C.; Belotti, S.; Chavant, Y.; Demarne, F. Development of Self Emulsifying Lipid Formulations of BCS Class II Drugs with Low to Medium Lipophilicity. Int. J. Pharm. 2015, 495, 385–392. DOI: 10.1016/j.ijpharm.2015.09.009.
  • Ud Din, F.; Zeb, A.; Shah, K. U. Development, In-Vitro and In-Vivo Evaluation of Ezetimibe-Loaded Solid Lipid Nanoparticles and Their Comparison with Marketed Product. J. Drug Deliv. Sci. Technol. 2019, 51, 583–590. DOI: 10.1016/j.jddst.2019.02.026.
  • Barkat, M. A.; Das, S. S.; Pottoo, F. H.; Beg, S.; Rahman, Z. Lipid-Based Nanosystem as Intelligent Carriers for Versatile Drug Delivery Applications. Curr. Pharm. Des. 2020, 26, 1167–1180. DOI: 10.2174/1381612826666200206094529.
  • Kalepu, S.; Manthina, M.; Padavala, V. Oral Lipid-Based Drug Delivery Systems–An Overview. Acta Pharm. Sin. B 2013, 3, 361–372. DOI: 10.1016/j.apsb.2013.10.001.
  • Kim, J. S.; Ud Din, F.; Lee, S. M.; Kim, D. S.; Choi, Y. J.; Woo, M. R.; Kim, J. O.; Youn, Y. S.; Jin, S. G.; Choi, H.-G.; et al. Comparative Study between High-Pressure Homogenisation and Shirasu Porous Glass Membrane Technique in Sildenafil Base-Loaded Solid SNEDDS: Effects on Physicochemical Properties and In Vivo Characteristics. Int. J. Pharm. 2021, 592, 120039. DOI: 10.1016/j.ijpharm.2020.120039.
  • Shirodkar, R. K.; Kumar, L.; Mutalik, S.; Lewis, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems. Pharm. Chem. J. 2019, 53, 440–453. DOI: 10.1007/s11094-019-02017-9.
  • Din, F. U.; Kim, D. W.; Choi, J. Y.; Thapa, R. K.; Mustapha, O.; Kim, D. S.; Oh, Y.-K.; Ku, S. K.; Youn, Y. S.; Oh, K. T.; et al. Irinotecan-Loaded Double-Reversible Thermogel with Improved Antitumor Efficacy without Initial Burst Effect and Toxicity for Intramuscular Administration. Acta Biomater. 2017, 54, 239–248. DOI: 10.1016/j.actbio.2017.03.007.
  • Din, F.; Jin, S. G.; Choi, H.-G. Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel. Polymers (Basel) 2021, 13, 551. DOI: 10.3390/polym13040551.
  • Yu, H.; Huang, Q. Improving the Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions. J. Agric. Food Chem. 2012, 60, 5373–5379. DOI: 10.1021/jf300609p.
  • Singh, B.; Khurana, L.; Bandyopadhyay, S.; Kapil, R.; Katare, O. Development of Optimized Self-Nano-Emulsifying Drug Delivery Systems (SNEDDS) of Carvedilol with Enhanced Bioavailability Potential. Drug Deliv. 2011, 18, 599–612. DOI: 10.3109/10717544.2011.604686.
  • El-Say, K. M.; Hosny, K. M. Optimization of Carvedilol Solid Lipid Nanoparticles: An Approach to Control the Release and Enhance the Oral Bioavailability on Rabbits. PLoS One. 2018, 13, e0203405. DOI: 10.1371/journal.pone.0203405.
  • Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal Carriers Enhance Oral Bioavailability of Carvedilol: Effects of Bile Salt-Enriched Vesicles and Carrier Surface Charge. Int. J. Nanomed. 2015, 10, 4797.
  • Hamed, R.; Farhan, A.; Abu-Huwaij, R.; Mahmoud, N. N.; Kamal, A. Lidocaine Microemulsion-Laden Organogels as Lipid-Based Systems for Topical Delivery. J. Pharm. Innov. 2020, 15, 521–534. DOI: 10.1007/s12247-019-09399-z..
  • Liu, H.; Wang, Y.; Han, F.; Yao, H.; Li, S. Gelatin-Stabilised Microemulsion-Based Organogels Facilitates Percutaneous Penetration of Cyclosporin A In Vitro and Dermal Pharmacokinetics In Vivo. J. Pharm. Sci. 2007, 96, 3000–3009. DOI: 10.1002/jps.20898.
  • Packer, M.; Lukas, M. A.; Tenero, D. M.; Baidoo, C. A.; Greenberg, B. H.; Group, S. Pharmacokinetic Profile of Controlled-Release Carvedilol in Patients with Left Ventricular Dysfunction Associated with Chronic Heart Failure or after Myocardial Infarction. Am. J. Cardiol. 2006, 98, 39–45. DOI: 10.1016/j.amjcard.2006.07.018.
  • Choi, D.-J.; Park, C. S.; Park, J. J.; Lee, H.-Y.; Kang, S.-M.; Yoo, B.-S.; Jeon, E.-S.; Hong, S. K.; Shin, J.-H.; Kim, M.-A.; et al. Assessment of Clinical Effect and Treatment Quality of Immediate-Release carvedilol-IR versus SLOW Release Carvedilol-SR in Heart Failure Patients (SLOW-HF): Study Protocol for a Randomized Controlled Trial. Trials 2018, 19, 1–9. DOI: 10.1186/s13063-018-2470-5.
  • Keating, G. M.; Jarvis, B. Carvedilol: A Review of Its Use in Chronic Heart Failure. Drugs 2003, 63, 1697–1741. DOI: 10.2165/00003495-200363160-00006.
  • Halder, S.; Hasan, M.; Das, B. K.; Kabir, A. K. L.; Rouf, A. S. S. In-Vitro Release Study of Carvedilol Phosphate Matrix Tablets Prepared with Hydroxypropyl Methylcellulose. Trop. J. Pharm. Res. 2012, 11, 379–386.
  • Aktas, E.; Eroglu, H.; Kockan, U.; Oner, L. Systematic Development of pH-Independent Controlled Release Tablets of Carvedilol Using Central Composite Design and Artificial Neural Networks. Drug Dev. Ind. Pharm. 2013, 39, 1207–1216. DOI: 10.3109/03639045.2012.705291.
  • Setti, M. V.; Ratna, J. V. Preparation and Evaluation of Controlled Release Tablets of Carvedilol. Asian J. Pharm. 2009, 3, 252. DOI: 10.4103/0973-8398.56307.
  • COREG CR™ (Carvedilol Phosphate) Extended-Release Capsules. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/022012s000TOC.cfm.GlaxoSmithKline, 2006.
  • Henderson, L. S.; Tenero, D. M.; Baidoo, C. A.; Campanile, A. M.; Harter, A. H.; Boyle, D.; Danoff, T. M. Pharmacokinetic and Pharmacodynamic Comparison of Controlled-Release Carvedilol and Immediate-Release Carvedilol at Steady State in Patients with Hypertension. Am. J. Cardiol. 2006, 98, 17–26. DOI: 10.1016/j.amjcard.2006.07.015.
  • Weber, M. A.; Sica, D. A.; Tarka, E. A.; Iyengar, M.; Fleck, R.; Bakris, G. L. Controlled-Release Carvedilol in the Treatment of Essential Hypertension. Am. J. Cardiol. 2006, 98, 32–38. DOI: 10.1016/j.amjcard.2006.07.017.
  • O'Sullivan, C. M.; Barbut, S.; Marangoni, A. G. Edible Oleogels for the Oral Delivery of Lipid Soluble Molecules: Composition and Structural Design Considerations. Trends Food Sci. Technol. 2016, 57, 59–73. DOI: 10.1016/j.tifs.2016.08.018.
  • Hamed, R.; AbuRezeq, A.; Tarawneh, O. Development of Hydrogels, Oleogels, and Bigels as Local Drug Delivery Systems for Periodontitis. Drug Dev. Ind. Pharm. 2018, 44, 1488–1497. DOI: 10.1080/03639045.2018.1464021.
  • Sahoo, S.; Kumar, N.; Bhattacharya, C.; Sagiri, S. S.; Jain, K.; Pal, K.; Ray, S. S.; Nayak, B. Organogels: Properties and Applications in Drug Delivery. Des. Monomers Polym. 2011, 14, 95–108. DOI: 10.1163/138577211X555721.
  • Patel, A. R.; Dewettinck, K. Edible Oil Structuring: An Overview and Recent Updates. Food Funct. 2016, 7, 20–29. DOI: 10.1039/c5fo01006c.
  • Savla, R.; Browne, J.; Plassat, V.; Wasan, K. M.; Wasan, E. K. Review and Analysis of FDA Approved Drugs Using Lipid-Based Formulations. Drug Dev. Ind. Pharm. 2017, 43, 1743–1758. DOI: 10.1080/03639045.2017.1342654.
  • Shrestha, H.; Bala, R.; Arora, S. Lipid-Based Drug Delivery Systems. J. Pharm. (Cairo) 2014, 2014, 801820. DOI: 10.1155/2014/801820.
  • Zhang, Z.; Tsai, P. C.; Ramezanli, T.; Michniak‐Kohn, B. B. Polymeric Nanoparticles-Based Topical Delivery Systems for the Treatment of Dermatological Diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. DOI: 10.1002/wnan.1211.
  • Shah, M.; Chuttani, K.; Mishra, A.; Pathak, K. Oral Solid Compritol 888 ATO Nanosuspension of Simvastatin: Optimization and Biodistribution Studies. Drug Dev. Ind. Pharm. 2011, 37, 526–537. DOI: 10.3109/03639045.2010.527983.
  • Aburahma, M. H.; Badr-Eldin, S. M. Compritol 888 ATO: A Multifunctional Lipid Excipient in Drug Delivery Systems and Nanopharmaceuticals. Expert Opin. Drug Deliv. 2014, 11, 1865–1883. DOI: 10.1517/17425247.2014.935335.
  • Hamed, R.; Al-Samydai, A.; Al Baraghthi, T.; Tarawneh, O.; Sunoqrot, S. Influence of HPMC K100LV and Compritol® HD5 ATO on Drug Release and Rheological Behavior of HPMC K4M Matrix Tablets. J. Pharm. Innov. 2017, 12, 62–75. DOI: 10.1007/s12247-016-9269-2.
  • Udelson, J. E.; Pressler, S. J.; Sackner-Bernstein, J.; Massaro, J.; Ordronneau, P.; Lukas, M. A.; Hauptman, P. J. Adherence with Once Daily versus Twice Daily Carvedilol in Patients with Heart Failure: The Compliance and Quality of Life Study Comparing Once-Daily Controlled-Release Carvedilol CR and Twice-Daily Immediate-Release Carvedilol IR in Patients with Heart Failure (CASPER) Trial. J. Card. Fail. 2009, 15, 385–393. DOI: 10.1016/j.cardfail.2008.12.010.
  • Alkilani, A. Z.; Hamed, R.; Al-Marabeh, S.; Kamal, A.; Abu-Huwaij, R.; Hamad, I. Nanoemulsion-Based Film Formulation for Transdermal Delivery of Carvedilol. J. Drug Deliv. Sci. Technol. 2018, 46, 122–128. DOI: 10.1016/j.jddst.2018.05.015.
  • Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F. J.; Khar, R. K.; Ali, M. Development and Bioavailability Assessment of Ramipril Nanoemulsion Formulation. Eur. J. Pharm. Biopharm. 2007, 66, 227–243. DOI: 10.1016/j.ejpb.2006.10.014.
  • Hamed, R.; Alnadi, S. H. Transfer Behavior of the Weakly Acidic BCS Class II Drug Valsartan from the Stomach to the Small Intestine during Fasted and Fed States. AAPS PharmSciTech 2018, 19, 2213–2225. DOI: 10.1208/s12249-018-1028-x.
  • Costa, P.; Lobo, J. M. S. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Biopharm. 2001, 13, 123–133.
  • Bardaweel, S. K.; Abu-Dahab, R.; Almomani, N. F. An In Vitro Based Investigation into the Cytotoxic Effects of D-Amino Acids. Acta Pharmaceut. 2013, 63, 467–478. DOI: 10.2478/acph-2013-0032.
  • Bouziane, A.; Bakchiche, B.; Dias, M.; Barros, L.; Ferreira, I.; AlSalamat, H.; Bardaweel, S. Phenolic Compounds and Bioactivity of Cytisus Villosus Pourr. Molecules 2018, 23, 1994. DOI: 10.3390/molecules23081994.
  • Jhawat, V.; Gupta, S.; Saini, V. Formulation and Evaluation of Novel Controlled Release of Topical Pluronic Lecithin Organogel of Mefenamic Acid. Drug Deliv. 2016, 23, 3573–3581. DOI: 10.1080/10717544.2016.1212439.
  • Pandey, M.; Belgamwar, V.; Gattani, S.; Surana, S.; Tekade, A. Pluronic Lecithin Organogel as a Topical Drug Delivery System. Drug Deliv. 2010, 17, 38–47. DOI: 10.3109/10717540903508961.
  • Gopalan, K.; Jose, J. Development of Amphotericin b Based Organogels against Mucocutaneous Fungal Infections. Braz. J. Pharm. Sci. 2020, 56, 1–17. DOI: 10.1590/s2175-97902020000117509.
  • Azeem, A.; Rizwan, M.; Ahmad, F. J.; Iqbal, Z.; Khar, R. K.; Aqil, M.; Talegaonkar, S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech 2009, 10, 69–76. DOI: 10.1208/s12249-008-9178-x.
  • Shen, L.-N.; Zhang, Y.-T.; Wang, Q.; Xu, L.; Feng, N.-P. Preparation and Evaluation of Microemulsion-Based Transdermal Delivery of Total Flavone of Rhizoma Arisaematis. Int. J. Nanomed. 2014, 9, 3453–3464.
  • Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. DOI: 10.3390/pharmaceutics10020057.
  • Worldwide, M. I. Dynamic Light Scattering, Common Terms Defined Inform White Paper. Malvern Instruments Limited: Malvern, UK, 2011; pp 1–6.
  • Wang, S.; Chen, P.; Zhang, L.; Yang, C.; Zhai, G. Formulation and Evaluation of Microemulsion-Based In Situ Ion-Sensitive Gelling Systems for Intranasal Administration of Curcumin. J. Drug Target 2012, 20, 831–840. DOI: 10.3109/1061186X.2012.719230.
  • Azarbayjani, A. F.; Jouyban, A.; Chan, S. Y. Impact of Surface Tension in Pharmaceutical Sciences. J. Pharm. Pharm. Sci. 2009, 12, 218–228. DOI: 10.18433/J32P40.
  • Sharma, A. K.; Garg, T.; Goyal, A. K.; Rath, G. Role of Microemuslsions in Advanced Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1177–1185. DOI: 10.3109/21691401.2015.1012261.
  • Gauglitz, P. A.; Mahoney, L. A.; Blanchard, J.; Bamberger, J. A. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants. Pacific Northwest National Lab. (PNNL): Richland, WA, 2011.
  • Teixeira, M. C.; Severino, P.; Andreani, T.; Boonme, P.; Santini, A.; Silva, A. M.; Souto, E. B. D-α-Tocopherol Nanoemulsions: Size Properties, Rheological Behavior, Surface Tension, Osmolarity and Cytotoxicity. Saudi Pharm. J. 2017, 25, 231–235. DOI: 10.1016/j.jsps.2016.06.004.
  • Aburahma, M. H.; Badr-Eldin, S. M. Compritol 888 ATO: A Multifunctional Lipid Excipient in Drug Delivery Systems and Nanopharmaceuticals. Expert Opin. Drug Del. 2014, 11, 1865–1883. DOI: 10.1517/17425247.2014.935335.
  • Rudraraju, V. S.; Wyandt, C. M. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose Hydrogels Using a Controlled Stress Rheometer: Part II. Int. J. Pharm. 2005, 292, 63–73. DOI: 10.1016/j.ijpharm.2004.10.012.
  • Hamed, R.; Fiegel, J. Synthetic Tracheal Mucus with Native Rheological and Surface Tension Properties. J. Biomed. Mater. Res. A 2014, 102, 1788–1798. DOI: 10.1002/jbm.a.34851.
  • Geremias-Andrade, I.; Souki, N.; Moraes, I.; Pinho, S. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials. Gels 2016, 2, 22. DOI: 10.3390/gels2030022.
  • Sagiri, S. S.; Kasiviswanathan, U.; Shaw, G. S.; Singh, M.; Anis, A.; Pal, K. Effect of Sorbitan Monostearate Concentration on the Thermal, Mechanical and Drug Release Properties of Oleogels. Korean J. Chem. Eng. 2016, 33, 1720–1727. DOI: 10.1007/s11814-015-0295-4.
  • Nokhodchi, A.; Raja, S.; Patel, P.; Asare-Addo, K. The Role of Oral Controlled Release Matrix Tablets in Drug Delivery Systems. BioImpacts: BI 2012, 2, 175–187.
  • Azadi, S.; Ashrafi, H.; Azadi, A. Mathematical Modeling of Drug Release from Swellable Polymeric Nanoparticles. J. Appl. Pharm. Sci. 2017, 7, 125–133.
  • Wu, I. Y.; Bala, S.; Škalko-Basnet, N.; Di Cagno, M. P. Interpreting Non-Linear Drug Diffusion Data: Utilizing Korsmeyer-Peppas Model to Study Drug Release from Liposomes. Eur. J. Pharm. Sci. 2019, 138, 105026. DOI: 10.1016/j.ejps.2019.105026.
  • Van Meerloo, J.; Kaspers, G. J.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. Cancer Cell Culture. Humana Press: Totowa, NJ, USA, 2011, pp 237–245.
  • Aykul, S.; Martinez-Hackert, E. Determination of Half-Maximal Inhibitory Concentration Using Biosensor-Based Protein Interaction Analysis. Anal. Biochem. 2016, 508, 97–103. DOI: 10.1016/j.ab.2016.06.025.
  • Forouz, F.; Dabbaghi, M.; Namjoshi, S.; Mohammed, Y.; Roberts, M. S.; Grice, J. E. Development of an Oil-in-Water Self-Emulsifying Microemulsion for Cutaneous Delivery of Rose Bengal: Investigation of Anti-Melanoma Properties. Pharmaceutics 2020, 12, 947. DOI: 10.3390/pharmaceutics12100947.
  • Mathen, C.; Peter, S.; Soman, G. Evaluation of Normal Human Dermal Fibroblasts as an In-Vitro Model for Testing Dermal Toxicity and Inflammation. El Mednifico J. 2015, 3, 1–13.
  • Eskandani, M.; Hamishehkar, H.; Ezzati Nazhad Dolatabadi, J. Cyto/Genotoxicity Study of Polyoxyethylene (20) Sorbitan Monolaurate (Tween 20). DNA Cell Biol. 2013, 32, 498–503. DOI: 10.1089/dna.2013.2059.
  • Levi-Schaffer, F.; Dayan, N.; Touitou, E. Diethylene Glycol Monoethyl Ether (Transcutol®) Displays Antiproliferative Properties Alone and in Combination with Xanthines. Skin Pharmacol. Physiol. 1996, 9, 53–59. DOI: 10.1159/000211390.
  • Wilking, J.; Graves, S.; Chang, C.; Meleson, K.; Lin, M.; Mason, T. Dense Cluster Formation during Aggregation and Gelation of Attractive Slippery Nanoemulsion Droplets. Phys. Rev. Lett. 2006, 96, 015501. DOI: 10.1103/PhysRevLett.96.015501.
  • Helgeson, M. E. Colloidal Behavior of Nanoemulsions: Interactions, Structure, and Rheology. Curr. Opin. Colloid Interface Sci. 2016, 25, 39–50. DOI: 10.1016/j.cocis.2016.06.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.