205
Views
0
CrossRef citations to date
0
Altmetric
Reviews of Science for Science Librarians

Reviews of Science for Science Librarians: Second-generation Biofuels Feedstock: Crop Wastes, Energy Grasses, and Forest Byproducts

REFERENCES

  • Agyin-Birikorang, S., G. A. O’Connor, and J. E. Erickson. 2013. Sustainable nutrient management package for cost-effective bioenergy biomass production. Journal of Plant Nutrition 36: 1881–1900. doi:10.1080/01904167.2013.818154
  • Alvarado-Morales, M., A. Boldrin, D. B. Karakashev, S. L. Holdt, I. Angelidaki, and T. Astrup. 2013. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresource Technology 129: 92–99. doi:10.1016/j.biortech.2012.11.029
  • Anfinrud, R., L. Cihacek, B. L. Johnson, Y. Ji, and M. T. Berti. 2013. Sorghum and kenaf biomass yield and quality response to nitrogen fertilization in the Northern Great Plains of the USA. Industrial Crops and Products 50: 159–65. doi:10.1016/j.indcrop.2013.07.022
  • Bailis, R., and J. E. Bake. 2010. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environmental Science & Technology 44: 8684–8691. doi:10.1021/es1019178
  • Bailis, R., and J. E. Bake, and G. Kavlak. 2013. Environmental implications of Jatropha biofuel from a silvi-pastoral production system in Central-West Brazil. Environmental Science & Technology 47: 8042–8050. doi:10.1021/es303954g
  • Bansal, A., P. Illukpitiya, S. P. Singh, and F. Tegegne. 2013. Economic competitiveness of ethanol production from cellulosic feedstock in Tennessee. Renewable Energy 59: 53–57. doi:10.1016/j.renene.2013.03.017
  • Barney, J. N., and J. M. DiTomaso. 2011. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: Potential problems and opportunities. PLoS One 6 (3): e17222. doi:10.1371/journal.pone.0017222
  • Bierman, J., C. Kulp, and J. B. Foote. 2011. Reviews of science for science librarians: Hydraulic fracturing: Geological, engineering, and environmental literature. Science & Technology Libraries 30: 326–342. doi:10.1080/0194262X.2011.626336
  • Borras, S. M., and J. C. Franco. 2012. Global land grabbing and trajectories of agrarian change: A preliminary analysis. Journal of Agrarian Change 12: 34–59. doi:10.1111/j.1471-0366.2011.00339.x
  • Borras, S. M., J. C. Franco, S. Gómez, C. Kay, and M. Spoor. 2012. Land grabbing in Latin America and the Caribbean. Journal of Peasant Studies 39: 845–872. doi:10.1080/03066150.2012.679931
  • Buller, L. S., I. Bergier, E. Ortega, and S. M. Salis. 2013. Dynamic energy valuation of water hyacinth biomass in wetlands: An ecological approach. Journal of Cleaner Production 54: 177–187. doi:10.1016/j.jclepro.2013.05.006
  • Cai, D., T. Zhang, J. Zheng, Z. Chang, Z. Wang, P. Qin, and T. Tan. 2013. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresource Technology 145: 97–102. doi:10.1016/j.biortech.2013.02.094
  • Carroll, A., and C. Somerville. 2009. Cellulosic biofuels. Annual Review of Plant Biology 60: 165–182. doi:10.1146/annurev.arplant.043008.092125
  • Carter, C. A., and H. I. Miller. (2012). Corn for food, not fuel. New York Times, July 30. http://www.nytimes.com/2012/07/031/opinion/cor-for-foodnotfuel.html
  • Cendrowski, S. (2012). The food-fuel dilemma. Fortune 165 (2): 12.
  • Chang, C., H. Lin, C. Chang, and S. Hsu. 2013. Potential of domestically produced and imported tung (Vernicia fordii) seeds for biofuels. Journal of Biobased Materials and Bioenergy 7: 512–515. doi:10.1166/jbmb.2013.1324
  • Choi, C. H., B. H. Um, Y. Kim, S. Kim, and K. K. Oh. 2013. Improved enzyme efficiency of rapeseed straw through the two-stage fractionation process using sodium hydroxide and sulfuric acid. Applied Energy 102: 640–646. doi:10.1016/j.apenergy.2012.08.011
  • Crespo, E., M. Graus, J. B. Gilman, B. M. Lerner, R. Fall, F. J. M. Harren, and C. Warneke. 2013. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop. Atmospheric Environment 65: 61–68. doi:10.1016/j.atmosenv.2012.10.009
  • Crutzen, P. J., A. R. Mosier, K. A. Smith, and W. Winiwarter. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics 8: 389–395.
  • Cutz, L., S. Sánchez-Delgado, U. Ruiz-Rivas, and D. Santana. 2013. Bioenergy production in Central America: Integration of sweet sorghum into sugar mills. Renewable & Sustainable Energy Reviews 25: 529–542. doi:10.1016/j.rser.2013.05.007
  • De Baan, L., C. L. Mutel, M. Curran, S. Hellweg, and T. Koellner. 2013. Land use in life cycle assessment: Global characterization factors based on regional and global potential species extinction. Environmental Science & Technology 47: 9281–9290. doi:10.1021/es400592q
  • De Morais, R. F., D. M. Quesada, V. M. Reis, S. Urquiaga, B. J. R. Alves, and R. M. Boddey. 2012. Contribution to biological nitrogen fixation of elephant grass (Pennisetum purpureum Schum.). Plant and Soil 356: 23–34. doi:10.1007/s11104-011-0944-2
  • Djomo, S. N., O. El Kasmioui, T. De Groote, L. S. Broeckx, M. S. Verlinden, G. Berhongaray, R. Fichot, et al. 2013. Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation. Applied Energy 111: 862–870. doi:10.1016/j.apenergy.2013.05.017
  • Duku, M. H., S. Gu, and E. Ben Hagan. (2011). A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable & Sustainable Energy Reviews 15: 404–415. doi:10.1016/j.rser.2010.09.033
  • Dunn, J. B., S. Mueller, H. Y. Kwon, and M. Q. Wang. 2013. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnology for Biofuels 6: 51. doi:10.1186/1754-6834-6-51
  • DuPont. 2012. Making cellulosic ethanol a reality: By the numbers. http://accellerase.dupont.com/fileadmin/user_upload/live/biofuels/DuPont_Making_Cellulosic_Ethanol_a_Reality.pdf
  • Dweikat, I., C. Weil, S. Moose, L. Kochian, N. Mosier, K. Ileleji, P. Brown, et al. 2012. Envisioning the transition to a next-generation biofuels industry in the U.S. Midwest. Biofuels, Bioproducts & Biorefining-BIOFPR 6: 376–386. doi:10.1002/bbb.1342
  • Egbendewe-Mondzozo, A., S. M. Swinton, B. D. Bals, and B. E. Dale. 2013. Can dispersed biomass processing protect the environment and cover the bottom line for biofuel? Environmental Science & Technology 47: 1695–1703. doi:10.1021/es303829w
  • Enis, M. 2008. Prices for animal feeds up by 42%. SN: Supermarket News 56 (34):17.
  • Enis, M.. 2011. Ethanol still a major source of inflationary pressure. SN: Supermarket News 59: (8): 10.
  • Feyereisen, G. W., G. G. T. Camargo, R. E. Baxter, J. M. Baker, and T. L. Richard. 2013. Cellulosic biofuel potential of a winter rye double crop across the U.S. corn-soybean belt. Agronomy Journal 105: 631–642. doi:10.2134/agronj2012.0282
  • Gadhamshetty, V., D. Belanger, C. J. Gardiner, A. Cummings, and A. Hynes. 2013. Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production. Bioresource Technology 127: 378–385. doi:10.1016/j.biortech.2012.09.079
  • Ganguly, A., S. Das, A. Bhattacharya, A. Dey, P. K. Chatterjee, and P. Kumar. 2013. Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: Optimization of driving parameters. Indian Journal of Experimental Biology 5: 556–566.
  • García Montoya, J. C., T. Machimura, and T. Matsui. 2012. Optimizing plant allocation for bioethanol production from agro-residues considering CO2 emission and energy demand-supply balance: A case study in Ecuador. Waste and Biomass Valorization 3: 435–442. doi:10.1007/s12649-012-9138-2
  • Ge, X., D. M. Burner, J. Xu, G. C. Phillips, and G. Sivakumar. 2011. Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnology Journal 6: 66–73. doi:10.1002/biot.201000240
  • Glithero, N. J., S. J. Ramsden, and P. Wilson. 2013. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective. Energy Policy 59: 161–171. doi: 10.1016/j.enpol.2013.03.003
  • Gnansounou, E., A. Dauriat, and C. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China. Bioresource Technology 96: 985–1002. doi:10.1016/j.biotech.2004.09.015
  • Gordon, D. R., K. J. Tancig, D. A. Onderdonk, and C. A. Gantz. 2011. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass & Bioenergy 35: 74–79. doi:10.1016/j.biombioe.2010.08.029
  • Goshadrou, A., K. Karimi, and M. J. Taherzadeh. 2013. Ethanol and biogas production from birch by NMMO pretreatment. Biomass & Bioenergy 49: 95–101. doi:10.1016/j.biombioe.2012.12.013
  • Hagman, J., M. Nerentorp, R. Arvidsson, and S. Molander. 2013. Do biofuels require more water than do fossil fuels? Life cycle-based assessment of Jatropha oil production in rural Mozambique. Journal of Cleaner Production 53: 176–185. doi:10.1016/j.jclepro.2013.03.039
  • Han, H., L. Wei, B. Liu, H. Yang, and J. Shen. 2012. Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. International Journal of Hydrogen Energy 37: 13200–13208. doi:10.1016/j.ijhydene.2012.03.073
  • Heaton, E. A., F. G. Dohleman, and S. P. Long. 2008. Meeting US biofuel goals with less land: The potential of Miscanthus. Global Change Biology 14: 2000–2014. doi:10.1111/j.1365-2486.2008.01662.x
  • Hetzler, S., D. Broker, and A. Steinbuchel. 2013. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains. Applied and Environmental Microbiology 79: 5159–5166. doi:10.1128/AEM.01214-13
  • Hinks, J., S. Edwards, P. J. Sallis, and G. S. Caldwell. 2013. The steady state anaerobic digestion of Laminaria hyperborea—Effect of hydraulic residence on biogas production and bacterial community composition. Bioresource Technology 143: 221–230. doi:10.1016/j.biortech.2013.05.124
  • Hoagland, K. C., M. D. Ruark, M. J. Renz, and R. D. Jackson. 2013. Agricultural management of switchgrass for fuel quality and thermal energy yield on highly erodible land in the driftless area of southwest Wisconsin. Bioenergy Research 6: 1012–1021. doi:10.1007/s12155-013-9335-2
  • Jacob, S., D. D. Pérez, C. Dupont, J. M. Commandre, F. Broust, A. Carriau, and D. Sacco. 2013. Short rotation forestry feedstock: Influence of particle size segregation on biomass properties. Fuel 111: 820–828. doi:10.1016/j.fuel.2013.04.043
  • Jia, G., X. Huang, H. Zhi, Y. Zhao, Q. Zhao, W. Li, and B. Han. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics 45: 957–967. doi:10.1038/ng.2673
  • Jordaan, S. M., L. D. Anadon, E. Mielke, and D. P. Schrag. 2013. Regional water implications of reducing oil imports with liquid transportation fuel alternatives in the United States. Environmental Science & Technology 47: 11976–11984. doi:10.1021/es404130v
  • Kang, K. E., G. Jeong, and D. Park. 2013. Rapeseed-straw enzymatic digestibility enhancement by sodium hydroxide treatment under ultrasound irradiation. Bioprocess and Biosystems Engineering 36: 1019–1029. doi:10.1007/s00449-012-0854-6
  • Kiniry, J. R., L. C. Anderson, M. V. V. Johnson, K. D. Behrman, M. Brakie, D. Burner, R. L. Cordesmon et al. 2013. Perennial biomass grasses and the Mason-Dixon Line: Comparative productivity across latitudes in the Southern Great Plains. Bioenergy Research 6: 276–291. doi:10.1007/s12155-012-9254-7
  • Krishania, M., V. K. Vijay, and R. Chandra. 2013. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57: 359–367. doi:10.1016/j.energy.2013.05.028
  • Kuhlman, T., V. Diogo, and E. Koomen. 2013. Exploring the potential of reed as a bioenergy crop in the Netherlands. Biomass & Bioenergy 55: 41–52. doi:10.1016/j.biombioe.2012.06.024
  • Lan, T. Q., H. M. Lou, and J. Y. Zhu. 2013. Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenergy Research 6: 476–485 doi:10.1007/s12155-012-9273-4
  • Langlois, J., J. F. Sassi, G. Jard, J. P. Steyer, J. P. Delgenes, and A. Helias. 2012. Life cycle assessment of biomethane from offshore-cultivated seaweed. Biofuels Bioproducts & Biorefining-BIOFPR 6: 387–404. doi:10.1002/bbb.1330
  • Larabi, C., W. al Maksoud, K. C. Szeto, A. Roubaud, P. Castelli, C. C. Santini, and J. J. Walter. 2013. Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts. Bioresource Technology 148: 255–260. doi:10.1016/j.biortech.2013.08.070
  • Lata, C., S. Gupta, and M. Prasad. 2013. Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology 33: 328–343. doi:10.3109/07388551.2012.716809
  • Lee, J. Y., Y. S. Kim, B. H. Um, and K. K. Oh. 2013. Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration. Renewable Energy 54: 196–200. doi:10.1016/j.renene.2012.08.025
  • Li, L., E. Coppola, J. Rine, J. L. Miller, and D. Walker. 2010. Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy & Fuels 24: 1305–1315. doi:10.1021/ef901163a
  • Li, Y., Y. Chen, X. Zhu, L. Hongdong, and D. Chen. 2013. Hydrolysis of birch wood by simultaneous ball milling, dilute citric acid, and fungus Penicillium simplicissimum treatment at room temperature. Journal of Applied Polymer Science 128: 3338–3345. doi:10.1002/app.38551
  • Li, Y., B. Dong, Z. Quan, J. Chen, J. Liu, Z. Cui, and X. Cheng. 2011. Biogas productivity potential of agricultural residue straw as mono-fermentation substrate. Advanced Materials Research 347–353:2582–2586. doi:10.4028/www.scientific.net/AMR.347-353.2582
  • Li, J. Shao, X. Wang, H. Yang, Y. Chen, Y. Deng, and H. Chen. 2013. Upgrading of bio-oil: Removal of the fermentation inhibitor (furfural) from the model compounds of bio-oil using pyrolytic char. Energy & Fuels 27: 5975–5981. doi:10.1021/ef401375q
  • Li, Z. L., C. H. Chen, E. L. Hegg, and D. B. Hodge. 2013. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings. Biotechnology for Biofuels 6: 119. doi:10.1186/1754-6834-6-119
  • Liu, K., F. Liang, Y. Lin, K. Tung, T. Chung, and S. Hsu. 2013. A novel green process on the purification of crude Jatropha oil with large permeate flux enhancement. Fuel 111: 180–185. doi:10.1016/j.fuel.2013.04.049
  • Macrelli, S., J. Mogensen, and G. Zacchi. 2012. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnology for Biofuels 5: 22. doi:10.1186/1754-6834-5-22
  • Maeda, R. N., C. A. Barcelos, L. M. Melo Santa Anna, and N. Pereira, Jr. 2013. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology 163: 38–44. doi:10.1016/j.jbiotec.2012.10.014
  • Manatt, R. K., A. Hallam, L. A. Schulte, E. A. Heaton, T. Gunther, R. B. Hall, and K. J. Moore. 2013. Farm-scale costs and returns for second generation bioenergy cropping systems in the U.S. Corn Belt. Environmental Research Letters 8: 035037. doi:10.1088/1748-9326/8/3/035037
  • Mann, J. J., J. N. Barney, G. B. Kyser, and J. M. DiTomaso. 2013. Root system dynamics of Miscanthus x giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. Bioenergy Research 6: 678–687. doi:10.1007/s12155-012-9287-y
  • Marousek, J. 2013. Prospects in straw disintegration for biogas production. Environmental Science and Pollution Research 20: 7268–7274. doi:10.1007/s11356-013-1736-4
  • Maung, T. A., C. R. Gustafson, D. M. Saxowsky, J. Nowatzki, T. Miljkovic, and D. Ripplinger. 2013. The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota. Applied Energy 109: 229–238. doi:10.1016/j.apenergy.2013.04.003
  • Mishra, U., M. S. Torn, and K. Fingerman. 2013. Miscanthus biomass productivity within U.S. croplands and its potential impact on soil organic carbon. Global Change Biology & Bioenergy 5: 391–399. doi:10.1111/j.1757-1707.2012.01201
  • Mofijur, M., H. H. Masjuki, M. A. Kalam, and A. E. Atabani. 2013. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 55: 879–887. doi:10.1016/j.energy.2013.02.059
  • Mosali, J., J. T. Biermacher, B. Cook, and J. Blanton. 2013. Bioenergy for cattle and cars: A switchgrass production system that engages cattle producers. Agronomy Journal 105: 960–966. doi:10.2134/agronj2012.0384
  • National Computational Sciences Leadership Program. 2001. Table of hard and soft hardwood trees. http://www.ncsec.org/cadre2/team18_2/students/tableHardSoft.htm
  • National Renewable Energy Laboratory. 2001. Corn stover for bioethanol: Your new cash crop? http://www.nrel.gov/docs/fy01osti/29691.pdf
  • Negussie, A., W. M. J. Achten, L. Norgrove, M. Hermy, and B. Muys. 2013. Invasiveness risk of biofuel crops using Jatropha curcas L. as a model species. Biofuels Bioproducts & Biorefining-BIOFPR 7: 485–498. doi:10.1002/bbb.1416
  • Ocheuze Trivelin, P. C., H. C. Junqueira Franco, R. Otto, D. A. Ferreira, A. C. Vitti, C. Fortes, and H. Cantarella. 2013. Impact of sugarcane trash on fertilizer requirements for Sao Paulo, Brazil. Scientia Agricola 70: 345–352.
  • Panghal, S., V. S. Beniwal, and S. S. Soni. 2013. Generation of superior germplasm of Jatropha curcas through ex vitro grafting. Agroforestry Systems 87: 1023–1029. doi:10.1007/s10457-013-9616-y
  • Rengsirikul, K., Y. Ishii, K. Kangvansaichol, P. Pripanapong, P. Sripichitt, V. Punsuvon, and S. Tudsri. 2011. Effects of inter-cutting interval on biomass yield, growth components and chemical composition of napiergrass (Pennisetum purpureum Schumach) cultivars as bioenergy crops in Thailand. Grassland Science 57: 135–141. doi: 10.1111/j.1744-697X.2011.00220.x
  • Renturk, I., H. Buyukgungor, A. Veziroglu, and M. Tsitskishvili. 2013. Evaluation of biohydrogen production potential from marine macro algae. Paper presented at NATO Advanced Research Workshop on the Black Sea: Strategy for Addressing its Energy Resource Development and Hydrogen Energy Problems, Batumi, Georgia. doi:10.1007/978-94-007-6152-0_11
  • Ribeiro, D. A., J. Cota, T. M. Álvarez, F. Bruechli, J. Bragato, B. M. P. Pereira, and F. M. Squina. 2012. The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One 7 (12): e50571. doi:10.1371/journal.pone.0050571
  • Risen, E., E. Gregeby, O. Tatarchenko, E. Blidberg, M. W. Malmstrom, U. Welander, and F. Grondahl. 2013. Assessment of biomethane production from maritime common reed. Journal of Cleaner Production 53: 186–194. doi:10.1016/j.jclepro,2013.03.030
  • Robson, P., E. Jensen, S. Hawkins, S. R. White, K. Kenobi, J. Clifton-Brown, I. Donnison, and K. Farrar. 2013. Accelerating the domestication of a bioenergy crop: Identifying and modelling morphological targets for sustainable yield increase in Miscanthus. Journal of Experimental Botany 64: 4143–4155. doi:10.1093/jxb/ert225
  • Robson, P. R. H., K. Farrar, A. P. Gay, E. F. Jensen, J. C. Clifton-Brown, and I. S. Donnison. 2013. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. Journal of Experimental Botany 64: 2373–2383. doi:10.1093/jxb/ert104
  • Schmer, M. R., K. P. Vogel, R. B. Mitchell, and R. K. Perrin. 2008. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America 105: 464–469. doi:10.1073/pnas.0704767105
  • Scurlock, J., D. Dayton, and B. Hames. 2000. Bamboo: An overlooked biomass resource? Biomass & Bioenergy 19: 229–244. doi:10.1016/S0961-9534(00)00038-6
  • Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, and T. Yu. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238–1240. doi:10.1126/science.1151861
  • Serapiglia, M. J., K. D. Cameron, A. J. Stipanovic, L. P. Abrahamson, T. A. Volk, and L. B. Smart. 2013. Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. Bioenergy Research 6: 533–546. doi:10.1007/s12155-012-9272-5
  • Serrano, C., H. Portero, and E. Monedero. 2013. Pine chips combustion in a 50 kW domestic biomass boiler. Fuel 111: 564–573. doi:10.1016/j.fuel.2013.02.068
  • Shao, Q. J., C. Cheng, R. G. Ong, L. Zhu, and C. Zhao. 2013. Hydrogen peroxide presoaking of bamboo prior to AFEX pretreatment and impact on enzymatic conversion to fermentable sugars. Bioresource Technology 142: 26–31. doi:10.1016/j.biortech.2013.05.011
  • Silveira, M. L., J. M. B. Vendramini, X. Sui, L. E. Sollenberger, and G. A. O’Connor. 2013. Use of warm-season grasses managed as bioenergy crops for phytoremediation of excess soil phosphorus. Agronomy Journal 105: 95–100. doi:10.2134/agronj2012.0307
  • Song, X. S., M. Zhang, Z. J. Pei, and D. H. Wang. 2014. Ultrasonic vibration-assisted pelleting of wheat straw: A predictive model for energy consumption using response surface methodology. Ultrasonics 54: 305–311. doi:10.1016/j.ultras.2013.06.013
  • Sun, Z., Y. Tang, S. Morimura, and K. Kida. 2013. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol. Bioresource Technology 128: 87–93. doi:10.1016/j.biortech.2012.10.082
  • Suramaythangkoor, T., and Z. Li. 2012. Energy policy tools for agricultural residues utilization for heat and power generation: A case study of sugarcane trash in Thailand. Renewable & Sustainable Energy Reviews 16: 4343–4351. doi:10.1016/j.rser.2012.02.033
  • Suresh, K., A. Ranjan, S. Singh, and V. S. Moholkar. 2014. Mechanistic investigations in sono-hybrid techniques for rice straw pretreatment. Ultrasonics & Sonochemistry 21: 200–207. doi: 10.1016/j.ultsonch.2013.07.010
  • Susmozas, A., D. Iribarren, and J. Dufour. 2013. Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. International Journal of Hydrogen Energy 38: 9961–9972. doi:10.1016/j.ijhydene.2013.06.012
  • The Telegraph-Journal (New Brunswick). (2013). Oil giants and biofuel industry battle for energy supremacy. November 18.
  • Uden, D. R., R. B. Mitchell, C. R. Allen, Q. F. Guan, and T. D. McCoy. 2013. The feasibility of producing adequate feedstock for year-round cellulosic ethanol production in an intensive agricultural fuelshed. Bioenergy Research 6: 930–938. doi:10.1007/s12155-013-9311-X
  • USDA National Resources Conservation Service ( NRCS). 2013. Plants profile: Miscanthus ×giganteus J.M. Greef & Deuter × Hodkinson & Renvoize [sacchariflorus × sinensis]. http://plants.usda.gov/java/reference?symbol=MIGI2&sort=Documentation
  • USDA NCRS Jimmy Carter Plant Materials Center. 2011. Plant fact sheet: Switchgrass (Panicum virgatum L.). USDA Natural Resources Conservation Services. http://plants.usda.gov/factsheet/pdf/fs_pavi2.pdf
  • Uzun, B. B., and G. Kanmaz. 2013. Effect of operating parameters on bio-fuel production from waste furniture sawdust. Waste Management & Research 31: 361–367. doi:10.1177/0734242X12470402
  • Vallinayagam, R., S. Vedharaj, W. M. Yang, P. S. Lee, K. J. E. Chua, and S. K. Chou. 2013. Combustion performance and emission characteristics study of pine oil in a diesel engine. Energy 57: 344–351. doi: 10.1016/j.energy.2013.05.061
  • Wald, M. L. (July 6, 2011). U.S. backs project to produce fuel from corn waste. New York Times. http://www.nytimes.com/2011/07/07/business/energy-environment/us-backs-plant-to-make-fuel-from-corn-waste.html?_r=0
  • Woody, T. (December 25, 2013). Start-up uses plant seeds for a biofuel. New York Times. http://www.nytimes.com/2013/12/25/business/energy-environment/start-up-makes-gains-turning-jatropha-bush-into-biofuel.html
  • Xiao, L. P., Z. J. Shi, Y. Y. Bai, W. Wang, X. M. Zhang, and R. C. Sun. 2013. Biodegradation of lignocellulose by white-rot fungi: Structural characterization of water-soluble hemicelluloses. Bioenergy Research 6: 1154–1164. doi:10.1007/s12155-013-9302-y
  • Yancey, N. A., J. S. Tumuluru, and C. T. Wright. 2013. Drying, grinding and pelletization studies on raw and formulated biomass feedstocks for bioenergy applications. Journal of Biobased Materials and Bioenergy 7: 549–558. doi:10.1166/jbmb.2013.1390
  • Yi-Zheng, L., Y. Chaowei, Y. S. Cheng, R. Zhang, B. M. Jenkins, and J. S. VanderGheynst. 2013. Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Applied Energy 105: 1–7. doi:10.1016/j.apenergy.2012.11.070
  • Yuan, T. Q., W. Wang, F. Xu, and R. C. Sun. 2013. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: Effect of integrated pretreatment on enzymatic hydrolysis. Bioresource Technology 144: 429–434. doi:10.1016/j.biortech.2012.12.034
  • Yue, G. H., F. Sun, and P. Liu. 2013. Status of molecular breeding for improving Jatropha curcas and biodiesel. Renewable & Sustainable Energy Reviews 26: 332–343. doi:10.1016/j.rser.2013.05.055
  • Zeri, M., M. Z. Hussain, K. J. Anderson-Teixeira, E. DeLucia, and C. J. Bernacchi. 2013. Water use efficiency of perennial and annual bioenergy crops in central Illinois. Journal of Geophysical Research-Biogeosciences 118: 581–589. doi:10.1002/jgrg.20052
  • Zheng, C., S. Fu, G. Tang, X. Hu, and J. Guo. 2013. Factors influencing direct shoot regeneration from mature leaves of Jatropha curcas, an important biofuel plant. In Vitro Cellular & Developmental Biology-Plant 49: 529–540. doi:10.1007/s11627-013-9530-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.