189
Views
1
CrossRef citations to date
0
Altmetric
Articles

The Effects of Prolonged Vibrotactile EMG-Based Biofeedback on Ankle Joint Range of Motion During Gait in Children with Spastic Cerebral Palsy: A Case Series

, ORCID Icon, , , , & show all
Pages 351-366 | Received 26 May 2021, Accepted 21 Nov 2022, Published online: 29 Nov 2022

References

  • Akaike, H. (1992). Information Theory and an Extension of the Maximum Likelihood Principle. In S. Kotz & N. L. Johnson (Eds.), Breakthroughs in Statistics. (pp. 610–624). Springer Series in Statistics (Perspectives in Statistics). Springer. https://doi.org/10.1007/978-1-4612-0919-5_38
  • Auld, M. L., Boyd, R., Moseley, G. L., Ware, R., & Johnston, L. M. (2012). Tactile function in children with unilateral cerebral palsy compared to typically developing children. Disability and Rehabilitation, 34(17), 1488–1494. https://doi.org/10.3109/09638288.2011.650314
  • Ballardini, G., Florio, V., Canessa, A., Carlini, G., Morasso, P., & Casadio, M. (2020). Vibrotactile Feedback for Improving Standing Balance. Frontiers in Bioengineering and Biotechnology, 8(February), 94–15. https://doi.org/10.3389/fbioe.2020.00094
  • Ballaz, L., Plamondon, S., & Lemay, M. (2010). Ankle range of motion is key to gait efficiency in adolescents with cerebral palsy. Clinical Biomechanics, 25(9), 944–948. https://doi.org/10.1016/j.clinbiomech.2010.06.011
  • Bertucco, M., Lunardini, F., Nardon, M., Casellato, C., Pedrocchi, A., & Sanger, T. D. (2019). Vibro-tactile EMG-based biofeedback induces changes of muscle activity patterns in childhood dystonia [Paper presentation]. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 53–56. https://doi.org/10.1109/NER.2019.8717085
  • Bloom, D. A., Kaplan, D. J., Mojica, E., Strauss, E. J., Gonzalez-Lomas, G., Campbell, K. A., Alaia, M. J., & Jazrawi, L. M. (2021). The minimal clinically important difference: A review of clinical significance. The American Journal of Sports Medicine. Advance online publication. https://doi.org/10.1177/03635465211053869
  • Bloom, R., Przekop, A., & Sanger, T. D. (2010). Prolonged Electromyogram Biofeedback Improves Upper Extremity Function in Children With Cerebral Palsy. Journal of Child Neurology, 25(12), 1480–1484. https://doi.org/10.1177/0883073810369704
  • Borish, C. N., Feinman, A., Bertucco, M., Ramsy, N. G., & Sanger, T. D. (2018). Comparison of speed-accuracy tradeoff between linear and nonlinear filtering algorithms for myocontrol. Journal of Neurophysiology, 119(6), 2030–2035. https://doi.org/10.1152/jn.00188.2017
  • Casellato, C., Ambrosini, E., Galbiati, A., Biffi, E., Cesareo, A., Beretta, E., Lunardini, F., Zorzi, G., Sanger, T. D., & Pedrocchi, A. (2019). EMG-based vibro-tactile biofeedback training: effective learning accelerator for children and adolescents with dystonia? A pilot crossover trial. Journal of Neuroengineering and Rehabilitation, 16(1), 150. https://doi.org/10.1186/s12984-019-0620-y
  • Colborne, G. R., Wright, F. V., & Naumann, S. (1994). Feedback of triceps surae EMG in gait of children with cerebral palsy: a controlled study. Archives of Physical Medicine and Rehabilitation, 75(1), 40–45. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8291961 https://doi.org/10.1016/0003-9993(94)90335-2
  • Contemori, S., Dieni, C. V., Sullivan, J. A., Ferraresi, A., Occhigrossi, C., Calabrese, F., Pettorossi, V. E., Biscarini, A., & Panichi, R. (2020). Sensory inflow manipulation induces learning-like phenomena in motor behavior. European Journal of Applied Physiology, 120(4), 811–828. https://doi.org/10.1007/s00421-020-04320-w
  • Davis, R. B., Õunpuu, S., Tyburski, D., & Gage, J. R. (1991). A gait analysis data collection and reduction technique. Human Movement Science, 10(5), 575–587. https://doi.org/10.1016/0167-9457(91)90046-Z
  • Do, J.-H., Yoo, E.-Y., Jung, M.-Y., & Park, H. Y. (2016). The effects of virtual reality-based bilateral arm training on hemiplegic children’s upper limb motor skills. NeuroRehabilitation, 38(2), 115–127. https://doi.org/10.3233/NRE-161302
  • Dreher, T., Buccoliero, T., Wolf, S. I., Heitzmann, D., Gantz, S., Braatz, F., & Wenz, W. (2012). Long-Term Results After Gastrocnemius-Soleus Intramuscular Aponeurotic Recession as a Part of Multilevel Surgery in Spastic Diplegic Cerebral Palsy. The Journal of Bone and Joint Surgery. American Volume, 94(7), 627–637. https://doi.org/10.2106/JBJS.K.00096
  • Dursun, E., Dursun, N., & Alican, D. (2004). Effects of biofeedback treatment on gait in children with cerebral palsy. Disability and Rehabilitation, 26(2), 116–120. https://doi.org/10.1080/09638280310001629679
  • Firth, G. B., Passmore, E., Sangeux, M., Thomason, P., Rodda, J., Donath, S., Selber, P., & Graham, H. K. (2013). Multilevel Surgery for Equinus Gait in Children with Spastic Diplegic Cerebral Palsy. The Journal of Bone and Joint Surgery. American Volume, Volume95(10), 931–938. https://doi.org/10.2106/JBJS.K.01542
  • Fowler, E. G., Staudt, L. A., Greenberg, M. B., & Oppenheim, W. L. (2009). Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Developmental Medicine and Child Neurology, 51(8), 607–614. https://doi.org/10.1111/j.1469-8749.2008.03186.x
  • Giggins, O. M., Persson, U., & Caulfield, B. (2013). Biofeedback in rehabilitation. Journal of Neuroengineering and Rehabilitation, 10(1), 60. https://doi.org/10.1186/1743-0003-10-60
  • Hussein, Z. A., Salem, I. A., & Ali, M. S. (2019). Effect of simultaneous proprioceptive-visual feedback on gait of children with spastic diplegic cerebral palsy. Journal of Musculoskeletal & Neuronal Interactions, 19(4), 500–506. http://www.ncbi.nlm.nih.gov/pubmed/31789301
  • Leardini, A., & Caravaggi, P. (2016). Kinematic Foot Models for Instrumented Gait Analysis. In Handbook of Human Motion (pp. 1–24). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-30808-1_28-1
  • Liyanagamage, S. A., Bertucco, M., Bhanpuri, N. H., & Sanger, T. D. (2017). Scaled Vibratory Feedback Can Bias Muscle Use in Children With Dystonia During a Redundant, 1-Dimensional Myocontrol Task. Journal of Child Neurology, 32(2), 161–169. https://doi.org/10.1177/0883073816671830
  • Lunardini, F., Cesareo, A., Biffi, E., Casellato, C., Pedrocchi, A., & Sanger, T. D. (2016). EMG-based vibro-tactile biofeedback improves motor control in children with secondary dystonia: two case reports. Neuropsychiatry, 06(06), 337–343. https://doi.org/10.4172/Neuropsychiatry.1000158
  • MacIntosh, A., Lam, E., Vigneron, V., Vignais, N., & Biddiss, E. (2019). Biofeedback interventions for individuals with cerebral palsy: a systematic review. Disability and Rehabilitation, 41(20), 2369–2391. https://doi.org/10.1080/09638288.2018.1468933
  • Marconi, B., Filippi, G. M., Koch, G., Pecchioli, C., Salerno, S., Don, R., Camerota, F., Saraceni, V. M., & Caltagirone, C. (2008). Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. Journal of the Neurological Sciences, 275(1–2), 51–59. https://doi.org/10.1016/j.jns.2008.07.025
  • Mathewson, M. A., & Lieber, R. L. (2015). Pathophysiology of Muscle Contractures in Cerebral Palsy. Physical Medicine and Rehabilitation Clinics of North America, 26(1), 57–67. https://doi.org/10.1016/j.pmr.2014.09.005
  • Moss, F., Ward, L. M., & Sannita, W. G. (2004). Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology, 115(2), 267–281. https://doi.org/10.1016/j.clinph.2003.09.014
  • Palisano, R. J., Rosenbaum, P., Bartlett, D., & Livingston, M. H. (2008). Content validity of the expanded and revised Gross Motor Function Classification System. Developmental Medicine and Child Neurology, 50(10), 744–750. https://doi.org/10.1111/j.1469-8749.2008.03089.x
  • Park, E., & Kim, W. (2014). Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy. Research in Developmental Disabilities, 35(2), 239–249. https://doi.org/10.1016/j.ridd.2013.10.021
  • Pettorossi, V. E., Panichi, R., Botti, F. M., Biscarini, A., Filippi, G. M., & Schieppati, M. (2015). Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin. Clinical Neurophysiology : official Journal of the International Federation of Clinical Neurophysiology, 126(10), 1886–1900. https://doi.org/10.1016/j.clinph.2015.02.057
  • Rios, D. C., Gilbertson, T., McCoy, S. W., Price, R., Gutman, K., Miller, K. E. F., Fechko, A., & Moritz, C. T. (2013). NeuroGame Therapy to improve wrist control in children with cerebral palsy: A case series. Developmental Neurorehabilitation, 16(6), 398–409. https://doi.org/10.3109/17518423.2013.766818
  • Risi, N., Shah, V., Mrotek, L. A., Casadio, M., & Scheidt, R. A. (2019). Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching. Journal of Neurophysiology, 122(1), 22–38. https://doi.org/10.1152/jn.00337.2018
  • Roll, J. P., Vedel, J. P., & Ribot, E. (1989). Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Experimental Brain Research, 76(1), 213–222. https://doi.org/10.1007/BF00253639
  • Rombokas, E., Stepp, C. E., Chang, C., Malhotra, M., & Matsuoka, Y. (2013). Vibrotactile Sensory Substitution for Electromyographic Control of Object Manipulation. IEEE Transactions on Bio-Medical Engineering, 60(8), 2226–2232. https://doi.org/10.1109/TBME.2013.2252174
  • Rosenkranz, K., & Rothwell, J. C. (2003). Differential effect of muscle vibration on intracortical inhibitory circuits in humans. The Journal of Physiology, 551(Pt 2), 649–660. https://doi.org/10.1113/jphysiol.2003.043752
  • Ryll, U., Bastiaenen, C., De Bie, R., & Staal, B. (2011). Effects of leg muscle botulinum toxin A injections on walking in children with spasticity-related cerebral palsy: a systematic review. Developmental Medicine and Child Neurology, 53(3), 210–216. https://doi.org/10.1111/j.1469-8749.2010.03890.x
  • Sanger, T. D., Chen, D., Delgado, M. R., Gaebler-Spira, D., Hallett, M., & Mink, J. W, Taskforce on Childhood Motor Disorders (2006). Definition and Classification of Negative Motor Signs in Childhood. PEDIATRICS, 118(5), 2159–2167. https://doi.org/10.1542/peds.2005-3016
  • Sanger, T. D. (2007). Bayesian Filtering of Myoelectric Signals. Journal of Neurophysiology, 97(2), 1839–1845. https://doi.org/10.1152/jn.00936.2006
  • Seitz, A. R., & Dinse, H. R. (2007). A common framework for perceptual learning. Current Opinion in Neurobiology, 17(2), 148–153. https://doi.org/10.1016/j.conb.2007.02.004
  • Sellier, E., Platt, M. J., Andersen, G. L., Krägeloh-Mann, I., De La Cruz, J., & Cans, C, Surveillance of Cerebral Palsy Network (2016). Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Developmental Medicine and Child Neurology, 58(1), 85–92. https://doi.org/10.1111/dmcn.12865
  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20(1), 21–53. https://doi.org/10.3758/s13423-012-0333-8
  • Smith, L., & Brouwer, B. (2005). Effectiveness of muscle vibration in modulating corticospinal excitability. Journal of Rehabilitation Research and Development, 42(6), 787–794. https://doi.org/10.1682/JRRD.2005.02.0041
  • Stepp, C. E., Chang, C., Malhotra, M., & Matsuoka, Y. (2011). Vibrotactile feedback aids EMG control of object manipulation [Paper presentation]. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1061–1064. https://doi.org/10.1109/IEMBS.2011.6090247
  • Toner, L. V., Cook, K., & Elder, G. C. B. (1998). Improved ankle function in children with cerebral palsy after computer-assisted motor learning. Developmental Medicine and Child Neurology, 40(12), 829–835. https://doi.org/10.1111/j.1469-8749.1998.tb12360.x
  • Wingert, J. R., Burton, H., Sinclair, R. J., Brunstrom, J. E., & Damiano, D. L. (2008). Tactile sensory abilities in cerebral palsy: deficits in roughness and object discrimination. Developmental Medicine and Child Neurology, 50(11), 832–838. https://doi.org/10.1111/j.1469-8749.2008.03105.x
  • Yoo, J. W., Lee, D. R., Cha, Y. J., & You, S. H. (2017). Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy. NeuroRehabilitation, 40(2), 175–185. https://doi.org/10.3233/NRE-161402
  • Yoo, J. W., Lee, D. R., Sim, Y. J., You, J. H., & Kim, C. J. (2014). Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy. Bio-Medical Materials and Engineering, 24(6), 3613–3618. https://doi.org/10.3233/BME-141188
  • Yu, S., Rethlefsen, S. A., Wren, T. A. L., & Kay, R. M. (2015). Long-term Ambulatory Change After Lower Extremity Orthopaedic Surgery in Children With Cerebral Palsy. Journal of Pediatric Orthopaedics, 35(3), 285–289. https://doi.org/10.1097/BPO.0000000000000251
  • Yun, S. J., Kim, C. H., Koh, E. K., Shin, E. G., & Jung, D. Y. (2015). Effect of segmental muscle vibration on spasticity in children with cerebral palsy: a randomized cross-over experiment. Physiotherapy, 101, e700–e701. https://doi.org/10.1016/j.physio.2015.03.3550
  • Zarkou, A., Lee, S. C. K., Prosser, L. A., Hwang, S., & Jeka, J. (2018). Stochastic resonance stimulation improves balance in children with cerebral palsy: a case control study. Journal of NeuroEngineering and Rehabilitation, 15(1), 115. https://doi.org/10.1186/s12984-018-0467-7
  • Zhou, J., Butler, E. E., & Rose, J. (2017). Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Frontiers in Human Neuroscience, 11(March), 1–20. https://doi.org/10.3389/fnhum.2017.00103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.