116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficiency of water use by Eucalyptus spp. for water conservation and sustainable forest production

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 01 Sep 2023, Accepted 13 Mar 2024, Published online: 30 Apr 2024

References

  • Allen, R., et al., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO - Food and Agriculture Organization of the United Nations. Irrigation and drainage paper 56.
  • Almeida, M.N.F., et al., 2020. Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. Forest Ecology and Management, 458, 1–10. doi:10.1016/j.foreco.2019.117743.
  • Alvares, C.A., et al., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22 (6), 711–728. doi:10.1127/0941-2948/2013/0507.
  • Amorim, R.S.S., et al., 2022. Water retention and availability in Brazilian Cerrado (neotropical savanna) soils under agricultural use: pedotransfer functions and decision trees. Soil and Tillage Research, 224, 105485. doi:10.1016/j.still.2022.105485.
  • Ares, A. and Fownes, J.H., 2000. Productivity, nutrient and water-use efficiency of Eucalyptus saligna and Toona ciliata in Hawaii. Forest Ecology and Management, 139 (1–3), 227–236. doi:10.1016/S0378-1127(00)00270-X.
  • Ayutthaya, S.I.N.A., et al., 2009. Transient thermal dissipation method of xylem sap flow measurement: multi-species calibration and field evaluation. Tree Physiology, 30 (1), 139–148. doi:10.1093/treephys/tpp092.
  • Binkley, D., et al., 2017. The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management, 405, 271–283. doi:10.1016/j.foreco.2017.09.050.
  • Binkley, D., et al., 2020. Variation in whole-rotation yield among Eucalyptus genotypes in response to water and heat stresses: the TECHS project. Forest Ecology and Management, 462, 117953. doi:10.1016/j.foreco.2020.117953.
  • Blum, A., 2016. Stress, strain, signaling, and adaptation – not just a matter of definition. Journal of Experimental Botany, 67 (3), 563–566. doi:10.1093/jxb/erv497.
  • Bosch, D.D., Marshall, L.K., and Teskey, R., 2014. Forest transpiration from sap flux density measurements in a Southeastern coastal plain riparian buffer system. Agricultural and Forest Meteorology, 187, 72–82. doi:10.1016/j.agrformet.2013.12.002.
  • Campoe, O.C., et al., 2016. Meteorological seasonality affecting individual tree growth in forest plantations in Brazil. Forest Ecology and Management, 380, 149–160. doi:10.1016/j.foreco.2016.08.048.
  • Cavalli, J.P., et al., 2020. Composition and functional soil properties of arenosols and acrisols: effects on eucalyptus growth and productivity. Soil and Tillage Research, 196, 104439. doi:10.1016/j.still.2019.104439.
  • Cavalli, J.P., de Araújo, E., and Reichert, J.M., 2022. Eucalyptus growth responses to soil water storage capacity in arenosols and acrisols soils: wood and biomass stock modelling. Sustainability, 14 (19), 12215. doi:10.3390/su141912215.
  • Curi, N. and Marques, J.J., 2011. Bases para o levantamento de solos da Celulose Riograndense. Lavras, Minas Gerais: Relatório de Projeto de Pesquisa, Universidade Federal de Lavras.
  • Delgado-Rojas, J.S., et al., 2010. Calibration of home-made heat dissipation probes for a full rotation of Eucalyptus grandis trees in Brazil. In: AGU Fall Meeting Abstracts. San Francisco, California. H31B–0992.
  • Ferreto, D.O.C., et al., 2021. Water budget fluxes in catchments under grassland and Eucalyptus plantations of different ages. Canadian Journal of Forest Research, 51 (4), 513–523. doi:10.1139/cjfr-2020-0156.
  • Forner, A., et al., 2018. Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiology, 38 (8), 1127–1137. doi:10.1093/treephys/tpy022.
  • França, J.S., et al., 2021. Subsoiling and mechanical hole-drilling tillage effects on soil physical properties and initial growth of eucalyptus after eucalyptus on steeplands. Soil and Tillage Research, 207, 104860. doi:10.1016/j.still.2020.104860.
  • Gallo, R., et al., 2018. Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Industrial Crops and Products, 123, 434–441. doi:10.1016/j.indcrop.2018.07.016.
  • Gándara, J., et al., 2020. Differential water-use efficiency and growth among Eucalyptus grandis hybrids under two different rainfall conditions. Forest Systems, 29 (2), 1–13. doi:10.5424/fs/2020292-16011.
  • Granier, A., 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annals of Forest Science, 42 (2), 193–200. doi:10.1051/forest:19850204.
  • Gubiani, P.I., et al., 2009. Tensão e extração de água em mesa de tensão e coluna de areia, em dois solos com elevada densidade. Ciência Rural, 39 (8), 2535–2538. doi:10.1590/S0103-84782009005000199.
  • Gubiani, P.I., et al., 2021. Rock size fragments reduction allow including their effect on water retention properties determined with a dew point potentiometer. Revista Brasileira de Ciência do Solo, 45, 1–11. doi:10.36783/18069657RBCS20200182.
  • Gubiani, P.I., Reinert, D.J., and Reichert, J.M., 2006. Método alternativo para a determinação da densidade de partículas do solo: exatidão, precisão e tempo de processamento. Ciência Rural, 36 (2), 664–668. doi:10.1590/S0103-84782006000200049.
  • Hakamada, R.E., et al., 2020. Influence of stand density on growth and water use efficiency in Eucalyptus clones. Forest Ecology and Management, 466, 118125. doi:10.1016/j.foreco.2020.118125.
  • Hu, Y., et al., 2019a. Hydrologic balance, net primary productivity and water use efficiency of the introduced exotic Eucalyptus grandis × Eucalyptus urophylla plantation in south-western China. Journal of Plant Ecology, 12, 982–992. doi:10.1093/jpe/rtz033.
  • Hu, Y., et al., 2019b. Responses of sap flux and intrinsic water use efficiency to canopy and understory nitrogen addition in a temperate broadleaved deciduous forest. Science of the Total Environment, 648, 325–336. doi:10.1016/j.scitotenv.2018.08.158.
  • Hubbard, R.M., et al., 2010. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management, 259 (9), 1714–1721. doi:10.1016/j.foreco.2009.10.028.
  • Hubbard, R.M., et al., 2020. Contrasting water use of two Eucalyptus clones across a precipitation and temperature gradient in Brazil. Forest Ecology and Management, 475, 118407. doi:10.1016/j.foreco.2020.118407.
  • IBÁ, 2019. Indústria Brasileira de Árvores: relatório anual 2019. São Paulo, Brasil, 80 Available from: https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf [ Accessed 25 April 2022].
  • IBGE – Instituto Brasileiro de Geografia e Estatística, 2004. Mapa da vegetação do Brasil e Mapa de Biomas do Brasil. Available from: http://www.ibge.gov.br [ Accessed 13 December 2018].
  • Klein, V.A., Reichert, J.M., and Reinert, D.J., 2006. Água disponível em um Latossolo Vermelho argiloso e murcha fisiológica de culturas. Revista Brasileira de Engenharia Agrícola e Ambiental, 10 (3), 646–650. doi:10.1590/S1415-43662006000300016.
  • Klute, A. and Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory methods. In, and A. Klute, ed. Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison: ASA and SSSA, 687–734.
  • Klute, A., 1986. Water retention. Laboratory methods. In, and A. Klute, ed. Methods of soil analysis, Part 1. Physical and mineralogical methods. Madison: ASA and SSSA, 635–662.
  • Lima, V.M.P., et al., 2012. Intervalo hídrico ótimo como indicador da melhoria da qualidade estrutural de Latossolo degradado. Revista Brasileira de Ciência do Solo, 36 (1), 71–78. doi:10.1590/S0100-06832012000100008.
  • MAPBIOMAS – Mapeamento anual da cobertura e uso da terra no Brasil – Destaques Pampa, 2021. Available from: https://mapbiomas-br-site.s3.amazonaws.com/Fact_Sheet_3.pdf [ Accessed 17 April 2022].
  • Mattos, E.M., et al., 2020. Variation in canopy structure, leaf area, light interception and light use efficiency among Eucalyptus clones. Forest Ecology and Management, 463, 118038. doi:10.1016/j.foreco.2020.118038.
  • Mentges, M.I., et al., 2016. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma, 263, 47–59. doi:10.1016/J.GEODERMA.2015.08.042.
  • Migacz, I.P., et al., 2018. Comparative leaf morpho-anatomy of six species of Eucalyptus cultivated in Brazil. Revista Brasileira de Farmacognosia, 28 (3), 273–281. doi:10.1016/j.bjp.2018.04.006.
  • Moreno, J.A., 1961. Clima do Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura, 73.
  • Oliveira, T.E., et al., 2017. Agricultural land use change in the Brazilian Pampa Biome: the reduction of natural grasslands. Land Use Policy, 63, 394–400. doi:10.1016/j.landusepol.2017.02.010.
  • Oren, R., et al., 1998. Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests. Annals of Forest Science, 55 (1–2), 191–216. doi:10.1051/forest:19980112.
  • Pérez, C., et al., 2020. Transpiration rates, climate and soil water balance of Eucalyptus grandis afforestation on temperate grasslands in ne Argentina. Journal of Sustainable Forestry, 40 (6), 607–621. doi:10.1080/10549811.2020.1793782.
  • Queiroz, T.B., et al., 2020. Temperature thresholds for Eucalyptus genotypes growth across tropical and subtropical ranges in South America. Forest Ecology and Management, 472, 118248. doi:10.1016/j.foreco.2020.118248.
  • R Core Team, 2023. R: a language and environment for statistical computing. R foundation for statistical computing. Available from: https://www.r-project.org/ [ Accessed 31 July 2023].
  • Reichert, J.M., et al., 2009. Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciência do Solo, 33 (6), 1547–1560. doi:10.1590/S0100-06832009000600004.
  • Reichert, J.M., et al., 2016. Fire-free fallow management by mechanized chopping of biomass for sustainable agriculture in eastern Amazon: effects on soil compactness, porosity, and water retention and availability. Land Degradation & Development, 27 (5), 1403–1412. doi:10.1002/ldr.2395.
  • Reichert, J.M., et al., 2017. Water balance in paired watersheds with Eucalyptus and degraded grassland in Pampa biome. Agricultural and Forest Meteorology, 237, 282–295. doi:10.1016/j.agrformet.2017.02.014.
  • Reichert, J.M., et al., 2020. Estimating water retention and availability in cultivated soils of southern Brazil. Geoderma Regional, 21, e00277. doi:10.1016/j.geodrs.2020.e00277.
  • Reichert, J.M., et al., 2021a. Tillage recommendation for commercial forest production: should tillage be based on soil penetrability, bulk density or more complex, integrative properties? Geoderma Regional, 25, e00381. doi:10.1016/j.geodrs.2021.e00381.
  • Reichert, J.M., et al., 2021b. Best tillage practices for early-growth of clonal eucalyptus in soils with distinct granulometry, drainage and profile depth. Soil and Tillage Research, 212, 105038. doi:10.1016/j.still.2021.105038.
  • Reichert, J.M., et al., 2021c. Eucalyptus tree stockings effect on water balance and use efficiency in subtropical sandy soil. Forest Ecology and Management, 497, 119473. doi:10.1016/j.foreco.2021.119473.
  • Reichert, J.M., et al., 2021d. Experimental catchments in the Pampa biome: database on hydrology in grasslands and eucalyptus plantations in subtropical Brazil. Hydrological Processes, 35 (8), e14285. doi:10.1002/hyp.14285.
  • Reichert, J.M., et al., 2023. Soil morphological, physical and chemical properties affecting Eucalyptus spp. productivity on Entisols and Ultisols. Soil and Tillage Research, 226, 105563. doi:10.1016/j.still.2022.105563.
  • Reinert, D.J. and Reichert, J.M., 2006. Coluna de areia para medir a retenção de água no solo protótipos e testes. Ciência Rural, 36 (6), 1931–1935. doi:10.1590/S0103-84782006000600044.
  • Reis, L.A.C., et al., 2021. Chlorophyll fluorescence and water content parameters are good biomarkers for selecting drought tolerant eucalyptus clones. Forest Ecology and Management, 481, 118682. doi:10.1016/j.foreco.2020.118682.
  • Rubilar, R., et al., 2020. Climate and water availability impacts on early growth and growth efficiency of Eucalyptus genotypes: the importance of GxE interactions. Forest Ecology and Management, 458, 117763. doi:10.1016/j.foreco.2019.117763.
  • Santos, K.F. and Reichert, J.M., 2022. Best tillage methods for eucalyptus growth and productivity A review on the Brazilian experience. Revista Brasileira de Ciência do Solo, 46, e0210091. doi:10.36783/18069657rbcs20210091.
  • Speich, M.J.R., Zappa, M., and Lischke, H., 2018. Sensitivity of forest water balance and physiological drought predictions to soil and vegetation parameters – a model-based study. Environmental Modelling and Software, 102, 213–232. doi:10.1016/j.envsoft.2018.01.016.
  • Suzuki, L.E.A.S., et al., 2015. Dispersion and flocculation of vertisols, alfisols and oxisols in Southern Brazil. Geoderma Regional, 5, 64–70. doi:10.1016/j.geodrs.2015.03.005.
  • Taiz, L. and Zeiger, E., 2016. Plant Physiology. 6. Porto Alegre: Artmed, 918.
  • Teixeira, P.C., et al., 2017. Manual de métodos de análise de solo. 3ª edição revista e ampliada. Rio de Janeiro, Brazil: Embrapa Solos.
  • Tie, Q., et al., 2017. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural and Forest Meteorology, 240–241, 46–57. doi:10.1016/j.agrformet.2017.03.018.
  • Tie, Q., et al., 2018. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Science of the Total Environment, 633, 12–29. doi:10.1016/j.scitotenv.2018.03.082.
  • Vaz, C.M.P., et al., 2005. Validation of the Arya and Paris water retention model for Brazilian soils. Soil Science Society of America Journal, 69 (3), 577–583. doi:10.2136/sssaj2004.0104.
  • Whitehead, D. and Beadle, C.L., 2004. Physiological regulation of productivity and water use in Eucalyptus: a review. Forest Ecology and Management, 193 (1–2), 113–140. doi:10.1016/j.foreco.2004.01.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.