15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrological responses of pine needle litter to rainfall erosional processes on Chinese karst hillslopes

& ORCID Icon
Received 26 May 2023, Accepted 08 Apr 2024, Published online: 22 May 2024

References

  • Assouline, S. and Ben-Hur, M., 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66 (3), 211–220. doi:10.1016/j.catena.2006.02.005.
  • Boxell, J. and Drohan, P.J., 2009. Surface soil physical and hydrological characteristics in Bromus tectorum L. (cheatgrass) versus Artemisia tridentata Nutt. (big sagebrush) habitat. Geoderma, 149 (3–4), 305–311. doi:10.1016/j.geoderma.2008.12.009.
  • Cerdà, A., 2001. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52 (1), 59–68. doi:10.1046/j.1365-2389.2001.00354.x.
  • Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 (3), 256–263. doi:10.1016/j.catena.2008.03.010.
  • Chen, L., et al., 2013. The role of soil‐surface sealing, microtopography, and vegetation patches in rainfall‐runoff processes in semiarid areas. Water Resources Research, 49 (9), 5585–5599. doi:10.1002/wrcr.20360.
  • Cui, Z., et al., 2021. Litter cover breaks soil water repellency of biocrusts, enhancing initial soil water infiltration and content in a semi-arid sandy land. Agricultural Water Management, 255. doi:10.1016/j.agwat.2021.107009.
  • Djaman, K., et al., 2016. Evaluation of FAO-56 penman-monteith model with limited data and the valiantzas models for estimating grass-reference evapotranspiration in Sahelian conditions. Journal of Irrigation and Drainage Engineering, 142 (11), 04016044. doi:10.1061/(ASCE)IR.1943-4774.0001070.
  • Du, et al., 2016. Study on the characteristics of single erosive raninfall and runoff and sediment yield in karst area of Guizhou. Ecological Science, 05, 111–117. In Chinese.
  • Du, J., et al., 2019. Effects of rainfall intensity and slope on interception and precipitation partitioning by forest litter layer. Catena, 172, 711–718. doi:10.1016/j.catena.2018.09.036.
  • Duan, J., et al., 2020. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of Southern China. Journal of Hydrology, 582, 124290. doi:10.1016/j.jhydrol.2019.124290.
  • Fang, Q., et al., 2022. Influencing factors of rainwater transformation and soil erosion in thin soil hillslope of rock desertification regions. Transactions of the Chinese Society of Agricultural Engineering, 38 (8). doi:10.11975/j.issn.1002-6819.2022.08.011.
  • Feng, N., Liu, D., and She, D., 2022. Effects of vegetation restoration on carbonate‐derived laterite erodibility in karst mountain areas. Land Degradation & Development, 33 (9), 1347–1365. doi:10.1002/ldr.4229.
  • Fung, T.K., et al., 2022. Litter decomposition and infiltration capacities in soils of different tropical urban land covers. Urban Ecosystems, 25 (1), 21–34. doi:10.1007/s11252-021-01126-2.
  • Geng, X.D., et al., 2009. Effect of rainfall intensities and slope gradients on characteristics of rainfall infiltration, runoff and sediment on red soil. Journal of Soil and Water Conservation, 23 (4), 39–43. doi:10.13870/j.cnki.stbcxb.2009.04.017.
  • He, Y.B., Zhang, X.B., and Wen, A.B., 2009. Discussion on karst soil erosion mechanism in karst mountain area in Southwest China. Ecology and Environment, 06, 2393–2398. doi:10.16258/j.cnki.1674-5906.2009.06.046.
  • Hu, X.P. and Long, Y.Y., 2018. surface runoff and soil erosion effects in karst native Pinusmassoniana forest. Pearl River, 2, 73–78. http://kns.cnki.net/kcms/detail/44.1037.TV.20180130.1819.032.html
  • Jiang, Z., Lian, Y., and Qin, X., 2014. Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Science Reviews, 132, 1–12. doi:10.1016/j.earscirev.2014.01.005.
  • Jin, C., 1995. A theoretical study on critical erosion slope gradient. Acta Geographica Sinica-Chinese Edition, 50, 234–239.
  • Jourgholami, M., et al., 2022. Hydrologic responses of undecomposed litter litter on compacted soil: litter water holding capacity, runoff, and sediment. Catena, 210, 105875. doi:10.1016/j.catena.2021.105875.
  • Kim, J.K., et al., 2014. Plot-scale study of surface runoff on well-covered forest floors under different canopy species. Quaternary International, 344, 75–85. doi:10.1016/j.quaint.2014.07.036.
  • Klute, A. and Dirksen, C., 1986. Water retention: laboratory methods. Methods of soil analysis: part 1—physical and mineralogical methods,(methodsofsoilan1). Soil Science Society of America, American Society of Agronomy. doi:10.2136/sssabookser5.1.2ed.c26.
  • Lee, G., et al., 2018. Evaluation of seven litter treatments for erosion control and vegetation establishment on steep slopes. Journal of Soil and Water Conservation, 73 (4), 434–442. doi:10.2489/jswc.73.4.434.
  • Li, X., Niu, J.Z., and Xie, B.Y., 2014. The effect of leaf litter cover on surface runoff and soil erosion in Northern China. PLOS ONE, 9 (9), e107789. doi:10.1371/journal.pone.0107789.
  • Liu, Y., et al., 2019. The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem. Hydrology and Earth System Sciences, 23 (5), 2481–2490. doi:10.5194/hess-23-2481-2019.
  • Liu, Q.Q. and Singh, V.P., 2004. Effect of microtopography, slope length and gradient, and vegetative cover on overland flow through simulation. Journal of Hydrologic Engineering, 9 (5), 375–382. doi:10.1061/(ASCE)1084-0699(2004)9:5(375).
  • Neris, J., et al., 2017. Effectiveness of polyacrylamide, wood shred litter, and pine needle litter as post-fire hillslope stabilization treatments in two contrasting volcanic soils. Forests, 8 (7), 247. doi:10.3390/f8070247.
  • Pannkuk, C.D. and Robichaud, P.R., 2003. Effectiveness of needle cast at reducing erosion after forest fires. Water Resources Research, 39 (12). doi:10.1029/2003wr002318.
  • Peng, X., et al., 2016. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. Catena, 138, 30–37. doi:10.1016/j.catena.2015.11.008.
  • Penna, D., et al., 2011. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15 (3), 689–702. doi:10.5194/hess-15-689-2011.
  • Prosdocimi, M., Tarolli, P., and Cerdà, A., 2016. Littering practices for reducing soil water erosion: a review. Earth-Science Reviews, 161, 191–203. doi:10.1016/j.earscirev.2016.08.006.
  • Rana, A. K., et al., 2022. Cellulosic pine needles-based biorefinery for a circular bioeconomy. Bioresource Technology, 128255. doi: 10.1016/j.biortech.2022.128255.
  • Scaife, C.I. and Band, L.E., 2017. Nonstationarity in threshold response of stormflow in southern A ppalachian headwater catchments. Water Resources Research, 53 (8), 6579–6596. doi:10.1002/2017wr020376.
  • Shi, W., et al., 2018. The effect of biological soil crusts on soil moisture dynamics under different rainfall conditions in the Tengger Desert, China. Hydrological processes, 32 (10), 1363–1374. doi:10.1002/hyp.11493.
  • Smets, T., Poesen, J., and Knapen, A., 2008. Spatial scale effects on the effectiveness of organic litteres in reducing soil erosion by water. Earth-Science Reviews, 89 (1–2), 1–12. doi:10.1016/j.earscirev.2008.04.001.
  • Sun, J.M., et al., 2018. Hydraulic characteristics of varying slope gradients, rainfall intensities and litter cover on vegetated slopes. Hydrology Research, 49 (2), 506–516. doi:10.2166/nh.2017.097.
  • Tromp‐van Meerveld, H.J. and McDonnell, J.J., 2006. Threshold relations in subsurface stormflow: 1. A 147‐storm analysis of the Panola hillslope. Water Resources Research, 42 (2). doi:10.1029/2004WR003778.
  • Tsiko, C.T., et al., 2012. Measuring forest floor and canopy interception in a Savannah ecosystem. Physics and Chemistry of the Earth, Parts A/B/C, 47, 122–127. doi:10.1016/j.pce.2011.06.009.
  • Tu, A., et al., 2023. Effect of fixed time interval of rainfall data on calculation of rainfall erosivity in the humid area of South China. Catena, 220, 106714. doi:10.1016/j.catena.2022.106714.
  • Tu, N., et al., 2022. Effects of moss overlay on soil patch infiltration and runoff in karst rocky desertification Slope Land. Water, 14 (21), 3429. doi:10.3390/w14213429.
  • Vega, J.A., Fernández, C., and Fonturbel, T., 2015. Comparing the effectiveness of seeding and littering+ seeding in reducing soil erosion after a high severity fire in Galicia (NW Spain). Ecological Engineering, 74, 206–212. doi:10.1016/j.ecoleng.2014.10.019.
  • Wang, L., et al., 2020. Comparison of the effects of litter covering and incorporation on infiltration and soil erosion under simulated rainfall. Hydrological Processes, 34 (13), 2911–2922. doi:10.1002/hyp.13779.
  • Wang, S., et al., 2022. Rainfall-runoff characteristics and their threshold behaviours on a karst hillslope in a peak-cluster depression region. Journal of Hydrology, 605, 127370. doi:10.1016/j.jhydrol.2021.127370.
  • Wang, T., et al., 2021. Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations. Scientific Reports, 11 (1), 1–13. doi:10.1038/s41598-021-92423-5.
  • Wang, B., Wang, Y., and Wang, L., 2016. The effects of erosional topography on soil properties in a Pinus massoniana forest in southern China. Journal of Soil and Water Conservation, 72 (1), 36–44. doi:10.2489/jswc.72.1.36.
  • Wu, G.L., et al., 2020. Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem. Geoderma, 374, 114429. doi:10.1016/j.geoderma.2020.114429.
  • Xia, L., et al., 2018. Threshold standard of erosive rainfall under different underlying surface conditions in the Loess Plateau Gully Region of East Gansu, China. Advances in Water Science, 06, 828–838. doi:10.14042/j.cnki.32.1309.2018.06.008.
  • Yang, Z., et al., 2021. Response of soil moisture to rainfall on karst yellow soil slope. Journal of Soil and Water Conservation, 02, 75–79. doi:10.13870/j.cnki.stbcxb.2021.02.011.
  • You, Y., et al., 2018. Positive interactions between Pinus massoniana and Castanopsis hystrix species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China. Forest Ecology and Management, 410, 193–200. doi:10.1016/j.foreco.2017.08.025.
  • Yu, K., et al., 2019. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of Southern China. Catena, 178, 313–321. doi:10.1016/j.catena.2019.03.038.
  • Yue, Y., et al., 2020. Large scale reforestation of farmlands on sloping hills in South China karst. Landscape Ecology, 35, 1445–1458. doi: 10.1007/s10980-020-01026-4.
  • Zhang, J., et al., 2022. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in southwest China. Journal of Hydrology, 609, 127779. doi:10.1016/j.jhydrol.2022.127779.
  • Zhang, X., et al., 2018. Effects of topographic factors on runoff and soil loss in Southwest China. Catena, 160, 394–402. doi:10.1016/j.catena.2017.10.013.
  • Zhong, F., et al., 2022. Relationships between lithology, topography, soil, and vegetation, and their implications for karst vegetation restoration. Catena, 209, 105831. doi:10.1016/j.catena.2021.105831.
  • Zhou, Q., et al., 2016. Response of soil moisture to rainfall on karst yellow soil slope. Ecological Science, 06, 140–145. doi:10.14108/j.cnki.1008-8873.2016.06.019.
  • Zhu, Q., et al., 2014. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope. Catena, 119, 61–70. doi:10.1016/j.catena.2014.03.010.
  • Zhu, X., et al., 2021. Conversion of primary tropical rainforest into rubber plantation degrades the hydrological functions of forest litter: insights from experimental study. Catena, 200, 105172. doi:10.1016/j.catena.2021.105172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.