927
Views
14
CrossRef citations to date
0
Altmetric
Physiology and Nutrition

The effects of sodium bicarbonate ingestion on cycling performance and acid base balance recovery in acute normobaric hypoxia

, ORCID Icon, , &
Pages 1464-1471 | Accepted 18 Dec 2018, Published online: 22 Jan 2019

References

  • Abbiss, C., Quod, M., Levin, G., Martin, D., & Laursen, P. (2009). Accuracy of the Velotron ergometer and SRM power meter. International Journal of Sports Medicine, 30(2), 107–112.
  • Adams, R. P., & Welch, H. G. (1980). Oxygen uptake, acid-base status, and performance with varied inspired oxygen fractions. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 49(5), 863–868.
  • Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Reviews, 88(1), 287–332.
  • Amann, M., Eldridge, M. W., Lovering, A. T., Stickland, M. K., Pegelow, D. F., & Dempsey, J. A. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. The Journal of Physiology, 575(3), 937–952.
  • Amann, M., Romer, L. M., Subudhi, A. W., Pegelow, D. F., & Dempsey, J. A. (2007). Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. The Journal of physiology, 581(1), 389–403.
  • Baguet, A., Reyngoudt, H., Pottier, A., Everaert, I., Callens, S., Achten, E., & Derave, W. (2009). Carnosine loading and washout in human skeletal muscles. Journal of Applied Physiology, 106(3), 837–842.
  • Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70–84.
  • Batterham, A. M., & Hopkins, W. G. (2006). Making meaningful inferences about magnitudes. International Journal of Sports Physiology and Performance, 1(1), 50–57.
  • Bishop, D., Edge, J., Davis, C., & Goodman, C. (2004). Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Medicine and Science in Sports and Exercise, 36(5), 807–813.
  • Cairns, S. P., & Lindinger, M. I. (2008). Do multiple ionic interactions contribute to skeletal muscle fatigue? The Journal of Physiology, 586(17), 4039–4054.
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hillsdale, NJ: L. Erlbaum Associates.
  • Deb, S. K., Brown, D. R., Gough, L. A., Mclellan, C. P., Swinton, P. A., Sparks, S. A., & McNaughton, L. R. (2018a). Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression. European Journal of Sport Science, 18(2), 243–256.
  • Deb, S. K., Gough, L. A., Sparks, S. A., & McNaughton, L. R. (2017). Determinants of curvature constant (W’) of the power duration relationship under normoxia and hypoxia: The effect of pre-exercise alkalosis. European Journal of Applied Physiology, 117(5), 901–912.
  • Deb, S. K., Gough, L. A., Sparks, S. A., & McNaughton, L. R. (2018b). Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. European Journal of Applied Physiology, 118(3), 607–615.
  • Drust, B., Waterhouse, J., Atkinson, G., Edwards, B., & Reilly, T. (2005). Circadian rhythms in sports performance–An update. Chronobiology International, 22(1), 21–44.
  • Duhamel, T. A., Green, H. J., Sandiford, S. D., Perco, J. G., & Ouyang, J. (2004). Effects of progressive exercise and hypoxia on human muscle sarcoplasmic reticulum function. Journal of Applied Physiology, 97(1), 188–196.
  • Fitts, R. H. (2016). The role of acidosis in fatigue. Medicine & Science in Sports & Exercise, 48(11), 2335–2338.
  • Flinn, S., Herbert, K., Graham, K., & Siegler, J. C. (2014). Differential effect of metabolic alkalosis and hypoxia on high-intensity cycling performance. Journal of Strength and Conditioning research/National Strength & Conditioning Association, 28(10), 2852–2858.
  • Gehlert, S., Bloch, W., & Suhr, F. (2015). Ca2+-dependent regulations and signaling in skeletal muscle: From electro-mechanical coupling to adaptation. International Journal of Molecular Sciences, 16(1), 1066–1095.
  • Gough, L. A., Deb, S. K., Sparks, A., & McNaughton, L. R. (2017a). The reproducibility of 4-km time trial (TT) performance following individualised sodium bicarbonate supplementation: A randomised controlled trial in trained cyclists. Sports Medicine-Open, 3(1), 34.
  • Gough, L. A., Deb, S. K., Sparks, S. A., & McNaughton, L. R. (2017b). The reproducibility of blood acid base responses in male collegiate athletes following individualised doses of sodium bicarbonate: A randomised controlled crossover study. Sports Medicine, 47(10), 2117–2127.
  • Gough, L. A., Deb, S. K., Sparks, S. A., & McNaughton, L. R. (2018). Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. Journal of Sports Sciences, 36(15), 1705–1712.
  • Granier, P., Dubouchaud, H., Mercier, B., Mercier, J., Ahmaidi, S., & Préfaut, C. (1996). Lactate uptake by forearm skeletal muscles during repeated periods of short-term intense leg exercise in humans. European journal of applied physiology and occupational physiology, 72(3), 209–214.
  • Hogan, M. C., Richardson, R. S., & Haseler, L. J. (1999). Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: A 31P-MRS study. Journal of Applied Physiology, 86(4), 1367–1373.
  • Hollidge-Horvat, M. G., Parolin, M. L., Wong, D., Jones, N. L., & Heigenhauser, G. J. (2000). Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. The American Journal of Physiology, 277(4), 647–658.
  • Holliss, B. A., Fulford, J., Vanhatalo, A., Pedlar, C. R., & Jones, A. M. (2013). Influence of intermittent hypoxic training on muscle energetics and exercise tolerance. Journal of Applied Physiology, 114(5), 611–619.
  • Jones, R. L., Stellingwerff, T., Artioli, G. G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. International Journal of Sport Nutrition and Exercise Metabolism, 26(5), 445–453.
  • Lloyd, P. (2004). Strong ion calculator–A practical bedside application of modern quantitative acid-base physiology. Critical Care and Resuscitation, 6(4), 285–294.
  • Lopes-Silva, J. P., Da Silva Santos, J. F., Artioli, G. G., Loturco, I., Abbiss, C., & Franchini, E. (2018). Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. European Journal of Sport Science, 18, 1–10.
  • Lühker, O., Berger, M. M., Pohlmann, A., Hotz, L., Gruhlke, T., & Hochreiter, M. (2017). Changes in acid–Base and ion balance during exercise in normoxia and normobaric hypoxia. European Journal of Applied Physiology, 117(11), 2251–2261.
  • Millet, G. P., Roels, B., Schmitt, L., Woorons, X., & Richalet, J. P. (2010). Combining hypoxic methods for peak performance. Sports Medicine, 40(1), 1–25.
  • Mounier, R., & Brugniaux, J. V. (2012). Counterpoint: Hypobaric hypoxia does not induce different responses from normobaric hypoxia. Journal of Applied Physiology, 112(10), 1784–1786.
  • Percival, M. E., Martin, B. J., Gillen, J. B., Skelly, L. E., MacInnis, M. J., Green, A. E., … Gibala, M. J. (2015). Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle. Journal of Applied Physiology, 119(11), 1303–1312.
  • Pruscino, C. L., Ross, M. L., Gregory, J. R., Savage, B., & Flanagan, T. R. (2008). Effects of sodium bicarbonate, caffeine, and their combination on repeated 200-m freestyle performance. International Journal of Sport Nutrition and Exercise Metabolism, 18(2), 116–130.
  • Reilly, T. (1990). Human circadian rhythms and exercise. Critical Reviews in Biomedical Engineering, 18(3), 165–180.
  • Robergs, R., Hutchinson, K., Hendee, S., Madden, S., & Siegler, J. (2005). Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. International Journal of Sport Nutrition and Exercise Metabolism, 15(1), 59–74.
  • Romer, L. M., Haverkamp, H. C., Amann, M., Lovering, A. T., Pegelow, D. F., & Dempsey, J. A. (2007). Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292(1), 598–606.
  • Saunders, B., Sale, C., Harris, R. C., & Sunderland, C. (2014). Effect of sodium bicarbonate and beta-alanine on repeated sprints during intermittent exercise performed in hypoxia. International Journal of Sport Nutrition and Exercise Metabolism, 24(2), 196–205.
  • Sinex, J. A., & Chapman, R. F. (2015). Hypoxic training methods for improving endurance exercise performance. Journal of Sport and Health Science, 4(4), 325–332.
  • Sostaric, S. M., Skinner, S. L., Brown, M. J., Sangkabutra, T., Medved, I., Medley, T., … MCkenna, M. J. (2006). Alkalosis increases muscle K + release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. The Journal of Physiology, 570(1), 185–205.
  • Sporer, B., & McKenzie, D. (2007). Reproducibility of a laboratory based 20-km time trial evaluation in competitive cyclists using the velotron pro ergometer. International Journal of Sports Medicine, 28(11), 940–944.
  • Stone, M. R., Thomas, K., Wilkinson, M., Gibson, A. S. C., & Thompson, K. G. (2011). Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. European Journal of Applied Physiology, 111(8), 1807–1813.
  • Westerblad, H. (2016). acidosis is not a significant cause of skeletal muscle fatigue. Medicine & Science in Sports & Exercise, 48(11), 2339–2342.
  • Wolfel, E. E., Groves, B. M., Brooks, G. A., Butterfield, G. E., Mazzeo, R. S., Moore, L. G., … McCullough, R. E., et al. (1991). Oxygen transport during steady-state submaximal exercise in chronic hypoxia. Journal of Applied Physiology, 70(3), 1129–1136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.