1,927
Views
27
CrossRef citations to date
0
Altmetric
Articles

From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum

, , &
Pages 49-64 | Received 03 Jan 2014, Accepted 21 Mar 2014, Published online: 14 Jul 2014

References

  • Abby, S. S., & Rocha, E. P. (2012). The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genetics, 8(9), e1002983.10.1371/journal.pgen.1002983
  • Aguilar, C., Vlamakis, H., Losick, R., & Kolter, R. (2007). Thinking about Bacillus subtilis as a multicellular organism. Current Opinion in Microbiology, 10, 638–643.10.1016/j.mib.2007.09.006
  • Akopian, D., Shen, K., Zhang, X., & Shan, S. O. (2013). Signal recognition particle: An essential protein-targeting machine. Annual Review of Biochemistry, 82, 693–721.10.1146/annurev-biochem-072711-164732
  • van Amsterdam, K., & van der Ende, A. (2004). Helicobacter pylori HP1034 (ylxH) is required for motility. Helicobacter, 9, 387–395.10.1111/hel.2004.9.issue-5
  • Balaban, M., & Hendrixson, D. R. (2011). Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathogens, 7, e1002420.10.1371/journal.ppat.1002420
  • Balaban, M., Joslin, S.N., & Hendrixson, D. R. (2009). FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. Journal of Bacteriology, 191, 6602–6611.10.1128/JB.00884-09
  • Bange, G., Kummerer, N., Engel, C., Bozkurt, G., Wild, K., & Sinning, I. (2010). FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proceedings of the National Academy of Sciences, 107, 11295–11300.10.1073/pnas.1001383107
  • Bange, G., Kümmerer, N., Grudnik, P., Lindner, R., Petzold, G., & Kressler, D. (2011). Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nature Structural & Molecular Biology, 18, 1376–1380.10.1038/nsmb.2141
  • Bange, G., Petzold, G., Wild, K., Parlitz, R. O., & Sinning, I. (2007). The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Proceedings of the National Academy of Sciences, 104, 13621–13625.10.1073/pnas.0702570104
  • Bange, G., & Sinning, I. (2013). SIMIBI twins in protein targeting and localization. Nature Structural & Molecular Biology, 20, 776–780.10.1038/nsmb.2605
  • Barken, K. B., Pamp, S. J., Yang, L., Gjermansen, M., Bertrand, J. J., Klausen, M., … Tolker-Nielsen, T. (2008). Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 10, 2331–2343.10.1111/emi.2008.10.issue-9
  • Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., & Doudna, J. A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science, 287, 1232–1239.10.1126/science.287.5456.1232
  • Berg, H. C., & Anderson, R. A. (1973). Bacteria swim by rotating their flagellar filaments. Nature, 245, 380–382.10.1038/245380a0
  • Bischoff, D. S., & Ordal, G. W. (1992). Identification and characterization of FliY, a novel component of the Bacillus subtilis flagellar switch complex. Molecular Microbiology, 6, 2715–2723.10.1111/mmi.1992.6.issue-18
  • Branda, S. S., Vik, S., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.10.1016/j.tim.2004.11.006
  • Bulyha, I., Hot, E., Huntley, S., & Sogaard-Andersen, L. (2011). GTPases in bacterial cell polarity and signalling. Current Opinion in Microbiology, 14, 726–733.10.1016/j.mib.2011.09.001
  • Buttner, D. (2012). Protein export according to schedule: Architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiology and Molecular Biology Reviews, 76, 262–310.10.1128/MMBR.05017-11
  • Chevance, F. F., & Hughes, K. T. (2008). Coordinating assembly of a bacterial macromolecular machine. Nature Reviews Microbiology, 6, 455–465.10.1038/nrmicro1887
  • Cornelis, G. R. (2006). The type III secretion injectisome. Nature Reviews Microbiology, 4, 811–825.10.1038/nrmicro1526
  • Correa, N. E., Peng, F., & Klose, K. E. (2005). Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. Journal of Bacteriology, 187, 6324–6332.10.1128/JB.187.18.6324-6332.2005
  • Courtney, C. R., Cozy, L. M., & Kearns, D. B. (2012). Molecular characterization of the flagellar hook in Bacillus subtilis. Journal of Bacteriology, 194, 4619–4629.10.1128/JB.00444-12
  • de Leeuw, E., te Kaat, K., Moser, C., Menestrina, G., Demel, R., de Kruijff, B., … Sinning, I. (2000). Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. The EMBO Journal, 19, 531–541.10.1093/emboj/19.4.531
  • Doetsch, R. N., & Sjoblad, R. D. (1980). Flagellar structure and function in eubacteria. Annual Review of Microbiology, 34, 69–108.10.1146/annurev.mi.34.100180.000441
  • Dong, J., Liu, C., Zhang, J., Xin, Z. T., Yang, G., Gao, B., … Xue, Y. N. (2006). Selection of novel nickel-binding peptides from flagella displayed secondary peptide library. Chemical Biology Drug Design, 68, 107–112.10.1111/jpp.2006.68.issue-2
  • Erhardt, M., Singer, H. M., Wee, D. H., Keener, J. P., & Hughes, K. T. (2011). An infrequent molecular ruler controls flagellar hook length in Salmonella enterica. The EMBO Journal, 30, 2948–2961.10.1038/emboj.2011.185
  • Evans, L. D., & Hughes, C. (2009). Selective binding of virulence type III export chaperones by FliJ escort orthologues InvI and YscO. FEMS Microbiology Letters, 293, 292–297.10.1111/fml.2009.293.issue-2
  • Evans, L. D., Stafford, G. P., Ahmed, S., Fraser, G. M., & Hughes, C. (2006). An escort mechanism for cycling of export chaperones during flagellum assembly. Proceedings of the National Academy of Sciences, 103, 17474–17479.10.1073/pnas.0605197103
  • Ferris, H. U., & Minamino, T. (2006). Flipping the switch: Bringing order to flagellar assembly. Trends in Microbiology, 14, 519–526.10.1016/j.tim.2006.10.006
  • Ferris, H. U., Furukawa, Y., Minamino, T., Kroetz, M. B., Kihara, M., Namba, K., & Macnab, R. M. (2005). FlhB regulates ordered export of flagellar components via autocleavage mechanism. Journal of Biological Chemistry, 280, 41236–41242.10.1074/jbc.M509438200
  • Freymann, D. M., Keenan, R. J., Stroud, R. M., & Walter, P. (1997). Structure of the conserved GTPase domain of the signal recognition particle. Nature, 385, 361–364.10.1038/385361a0
  • Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L., & Curtiss 3rd, R. (1997). Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nature Biotechnology, 15, 29–34.10.1038/nbt0197-29
  • Green, J. C., Kahramanoglou, C., Rahman, A., Pender, A. M., Charbonnel, N., & Fraser, G. M. (2009). Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. Journal of Molecular Biology, 391, 679–690.10.1016/j.jmb.2009.05.075
  • Gregory, J. A., Becker, E. C., & Pogliano, K. (2008). Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes & Development, 22, 3475–3488.10.1101/gad.1732408
  • Grudnik, P., Bange, G., & Sinning, I. (2009). Protein targeting by the signal recognition particle. Biological Chemistry, 390, 775–782.
  • Guttenplan, S. B., Shaw, S., & Kearns, D. B. (2013). The cell biology of peritrichous flagella in Bacillus subtilis. Molecular Microbiology, 87, 211–229.10.1111/mmi.2013.87.issue-1
  • Hainzl, T., Huang, S., Meriläinen, G., Brännström, K., & Sauer-Eriksson, A. E. (2011). Structural basis of signal-sequence recognition by the signal recognition particle. Nature Structural & Molecular Biology, 18, 389–391.10.1038/nsmb.1994
  • Ibuki, T., Uchida, Y., Hironaka, Y., Namba, K., Imada, K., & Minamino, T. (2013). Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. Journal of Bacteriology, 195, 466–473.10.1128/JB.01711-12
  • Imada, K., Minamino, T., Tahara, A., & Namba, K. (2007). Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proceedings of the National Academy of Sciences, 104, 485–490.10.1073/pnas.0608090104
  • Janda, C. Y., Li, J., Oubridge, C., Hernández, H., Robinson, C. V., & Nagai, K. (2010). Recognition of a signal peptide by the signal recognition particle. Nature, 465, 507–510.10.1038/nature08870
  • Kawamoto, A., Morimoto, Y. V., Miyata, T., Minamino, T., Hughes, K. T., Kato, T., & Namba, K. (2013). Common and distinct structural features of Salmonella injectisome and flagellar basal body. Scientific Reports, 3, 1–6.
  • Kazmierczak, B. I., & Hendrixson, D. R. (2013). Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Molecular Microbiology, 88, 655–663.10.1111/mmi.2013.88.issue-4
  • Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8, 634–644.10.1038/nrmicro2405
  • Kinoshita, M., Hara, N., Imada, K., Namba, K., & Minamino, T. (2013). Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Molecular Microbiology, 90, 1249–1261.10.1111/mmi.2013.90.issue-6
  • Kobayashi, K. (2007). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Molecular Microbiology, 66, 395–409.10.1111/mmi.2007.66.issue-2
  • Kubori, T., Okumura, M., Kobayashi, N., Nakamura, D., Iwakura, M., & Aizawa, S. I. (1997). Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis. Molecular Microbiology, 24, 399–410.10.1046/j.1365-2958.1997.3341714.x
  • Kumara, M. T., Srividya, N., Muralidharan, S., & Tripp, B. C. (2006). Bioengineered flagella protein nanotubes with cysteine loops: Self-assembly and manipulation in an optical trap. Nano Letters, 6, 2121–2129.10.1021/nl060598u
  • Kusumoto, A., Kamisaka, K., Yakushi, T., Terashima, H., Shinohara, A., & Homma, M. (2006). Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. Journal of Biochemistry, 139, 113–121.10.1093/jb/mvj010
  • Kusumoto, A., Shinohara, A., Terashima, H., Kojima, S., Yakushi, T., & Homma, M. (2008). Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology, 154, 1390–1399.10.1099/mic.0.2007/012641-0
  • Leifson, E. (1960). Atlas of bacterial flagellation. Record number: 19601101988.
  • Leipe, D. D., Wolf, Y. I., Koonin, E. V., & Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology, 317, 41–72.10.1006/jmbi.2001.5378
  • Lele, P. P., Branch, R. W., Nathan, V. S., & Berg, H. C. (2012). Mechanism for adaptive remodeling of the bacterial flagellar switch. Proceedings of the National Academy of Sciences, 109, 20018–20022.10.1073/pnas.1212327109
  • Lu, J., & Sun, P. D. (2012). The structure of the TLR5-flagellin complex: A new mode of pathogen detection, conserved receptor dimerization for signaling. Science Signalling, 5, e11.
  • Lu, Z., Murray, K. S., Cleave, V., LaVallie, E. R., Stahl, M. L., & McCoy, J. M. (1995). Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: A system designed for exploring protein–protein interactions. Bio/Technology , 13, 366–372.10.1038/nbt0495-366
  • Lutkenhaus, J. (2007). Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annual Review of Biochemistry, 76, 539–562.10.1146/annurev.biochem.75.103004.142652
  • Lutkenhaus, J. (2008). Min oscillation in bacteria. Advances in Experimental Medicine and Biology, 641, 49–61.
  • Macnab, R. M. (2003). How bacteria assemble flagella. Annual Review of Microbiology, 57, 77–100.10.1146/annurev.micro.57.030502.090832
  • Macnab, R. M. (2004). Type III flagellar protein export and flagellar assembly. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1694, 207–217.10.1016/j.bbamcr.2004.04.005
  • Majander, K., Anton, L., Antikainen, J., Lang, H., Brummer, M., Korhonen, T. K., & Westerlund-Wikstrom, B. (2005). Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nature Biotechnology, 23, 475–481.10.1038/nbt1077
  • Majander, K., Korhonen, T. K., & Westerlund-Wikstrom, B. (2005). Simultaneous display of multiple foreign peptides in the FliD capping and FliC filament proteins of the Escherichia coli flagellum. Applied and Environmental Microbiology, 71, 4263–4268.10.1128/AEM.71.8.4263-4268.2005
  • Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E., & Errington, J. (1998). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes & Development, 12, 3419–3430.10.1101/gad.12.21.3419
  • Maruyama, Y., Momma, M., Mikami, B., Hashimoto, W., & Murata, K. (2008). Crystal structure of a novel bacterial cell-surface flagellin binding to a polysaccharide. Biochemistry, 47, 1393–1402.10.1021/bi701872x
  • McCarter, L. L. (2004). Dual flagellar systems enable motility under different circumstances. Journal of Molecular Microbiology and Biotechnology, 7, 18–29.10.1159/000077866
  • Minamino, T. (2013). Protein export through the bacterial flagellar type III export pathway. Biochimca et Biophysica Acta.
  • Minamino, T., Kinoshita, M., Hara, N., Takeuchi, S., Hida, A., Koya, S., … Namba, K. (2012). Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Molecular Microbiology, 83, 775–788.10.1111/j.1365-2958.2011.07964.x
  • Minamino, T., & MacNab, R. M. (2000). FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Molecular Microbiology, 37, 1494–1503.10.1046/j.1365-2958.2000.02106.x
  • Minamino, T., & Namba, K. (2008). Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature, 451, 485–488.10.1038/nature06449
  • Moens, S., & Vanderleyden, J. (1996). Functions of bacterial flagella. Critical Reviews in Microbiology, 22, 67–100.10.3109/10408419609106456
  • Montoya, G., Svensson, C., Luirink, J., & Sinning, I. (1997). Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature, 385, 365–368.10.1038/385365a0
  • Murray, T. S., & Kazmierczak, B. I. (2006). FlhF is required for swimming and swarming in Pseudomonas aeruginosa. Journal of Bacteriology, 188, 6995–7004.10.1128/JB.00790-06
  • Newton, S. M., Jacob, C. O., & Stocker, B. A. (1989). Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science, 244, 70–72.10.1126/science.2468182
  • Ottemann, K. M., & Miller, J. F. (1997). Roles for motility in bacterial-host interactions. Molecular Microbiology, 24, 1109–1117.10.1046/j.1365-2958.1997.4281787.x
  • Pandza, S., Baetens, M., Park, C. H., Au, T., Keyhan, M., & Matin, A. (2000). The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Molecular Microbiology, 36, 414–423.10.1046/j.1365-2958.2000.01859.x
  • Park, K. T., Wu, W., Battaile, K. P., Lovell, S., Holyoak, T., & Lutkenhaus, J. (2011). The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell, 146, 396–407.10.1016/j.cell.2011.06.042
  • Park, K. T., Wu, W., Lovell, S., & Lutkenhaus, J. (2012). Mechanism of the asymmetric activation of the MinD ATPase by MinE. Molecular Microbiology, 85, 271–281.10.1111/mmi.2012.85.issue-2
  • Paul, K., Erhardt, M., Hirano, T., Blair, D. F., & Hughes, K. T. (2008). Energy source of flagellar type III secretion. Nature, 451, 489–492.10.1038/nature06497
  • Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293.10.1046/j.1365-2958.1998.01061.x
  • Samatey, F. A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M., & Namba, K. (2001). Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature, 410, 331–337.10.1038/35066504
  • Samatey, F. A., Matsunami, H., Imada, K., Nagashima, S., Shaikh, T. R., Thomas, D., … Namba, K. (2004). Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature, 431, 1062–1068.10.1038/nature02997
  • Schniederberend, M., Abdurachim, K., Murray, T. S., & Kazmierczak, B. I. (2013). The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa. Journal of Bacteriology, 195, 1051–1060.10.1128/JB.02013-12
  • Serra, D. O., Richter, A. M., Klauck, G., Mika, F., & Hengge, R. (2013). Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio, 4, e00103–00113.
  • Shen, B., & Lutkenhaus, J. (2010). Examination of the interaction between FtsZ and MinCN in E. coli suggests how MinC disrupts Z rings. Molecular Microbiology, 75, 1285–1298.10.1111/mmi.2010.75.issue-5
  • Shen, Y., Chern, M., Silva, F. G., & Ronald, P. (2001). Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF. Molecular Plant-Microbe Interactions, 14, 204–213.10.1094/MPMI.2001.14.2.204
  • Silverman, M., & Simon, M. (1974). Flagellar rotation and the mechanism of bacterial motility. Nature, 249, 73–74.10.1038/249073a0
  • Sourjik, V., & Wingreen, N. S. (2012). Responding to chemical gradients: Bacterial chemotaxis. Current Opinion in Cell Biology, 24, 262–268.10.1016/j.ceb.2011.11.008
  • Stafford, G. P., Evans, L. D., Krumscheid, R., Dhillon, P., Fraser, G. M., & Hughes, C. (2007). Sorting of early and late flagellar subunits after docking at the membrane ATPase of the type III export pathway. Journal of Molecular Biology, 374, 877–882.10.1016/j.jmb.2007.09.080
  • Stjepanovic, G., Kapp, K., Bange, G., Graf, C., Parlitz, R., Wild, K., … Sinning, I. (2011). Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. Journal of Biological Chemistry, 286, 23489–23497.10.1074/jbc.M110.212340
  • Stolz, B., & Berg, H. C. (1991). Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. Journal of Bacteriology, 173, 7033–7037.
  • Suzuki, H., Yonekura, K., & Namba, K. (2004). Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. Journal of Molecular Biology, 337, 105–113.10.1016/j.jmb.2004.01.034
  • Thomas, J., Stafford, G. P., & Hughes, C. (2004). Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proceedings of the National Academy of Sciences, 101, 3945–3950.10.1073/pnas.0307223101
  • Thomas, D. R., Francis, N. R., Xu, C., & DeRosier, D. J. (2006). The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 188, 7039–7048.10.1128/JB.00552-06
  • Van Gerven, N., Waksman, G., & Remaut, H. (2011). Pili and flagella biology, structure, and biotechnological applications. Progress in Molecular Biology and Translational Science, 103, 21–72.10.1016/B978-0-12-415906-8.00005-4
  • Vartanian, A. S., Paz, A., Fortgang, E. A., Abramson, J., & Dahlquist, F. W. (2012). Structure of flagellar motor proteins in complex allows for insights into motor structure and switching. Journal of Biological Chemistry, 287, 35779–35783.10.1074/jbc.C112.378380
  • von Moltke, J., Ayres, J. S., Kofoed, E.M., Chavarría-Smith, J., & Vance, R. E. (2013). Recognition of bacteria by inflammasomes. Annual Review of Immunology, 31, 73–106.10.1146/annurev-immunol-032712-095944
  • Voigts-Hoffmann, F., Schmitz, N., Shen, K., Shan, S. O., Ataide, S. F., & Ban, N. (2013). The structural basis of FtsY recruitment and GTPase activation by SRP RNA. Molecular Cell, 52, 643–654.10.1016/j.molcel.2013.10.005
  • Westerlund-Wikstrom, B., Tanskanen, J., Virkola, R., Hacker, J., Lindberg, M., Skurnik, M., & Korhonen, T. K. (1997). Functional expression of adhesive peptides as fusions to Escherichia coli flagellin. Protein Engineering Design and Selection, 10, 1319–1326.10.1093/protein/10.11.1319
  • Wood, T. K., González Barrios, A. F., Herzberg, M., & Lee, J. (2006). Motility influences biofilm architecture in Escherichia coli. Applied Microbiology and Biotechnology, 72, 361–367.10.1007/s00253-005-0263-8
  • Yonekura, K., Maki-Yonekura, S., & Namba, K. (2001). Structure analysis of the flagellar cap-filament complex by electron cryomicroscopy and single-particle image analysis. Journal of Structural Biology, 133, 246–253.10.1006/jsbi.2000.4345
  • Yonekura, K., Maki-Yonekura, S., & Namba, K. (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424, 643–650.10.1038/nature01830
  • Zarivach, R., Deng, W., Vuckovic, M., Felise, H. B., Nguyen, H. V., Miller, S., … Strynadka, N. C. (2008). Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature, 453, 124–127.10.1038/nature06832

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.