157
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modulation of Insulin Resistance by Silybum marianum Leaves, and its Synergistic Efficacy with Gymnema sylvestre, Momordica charantia, Trigonella-foenum graecum Against Protein Tyrosine Phosphatase 1B

, , ORCID Icon, , , , , & show all
Received 19 Aug 2022, Accepted 18 Dec 2022, Published online: 14 Jan 2023

References

  • AlFaris, N. A., Alshammari, G. M., Alsayadi, M. M., AlFaris, M. A., & Yahya, M. A. (2020). Antidiabetic and antihyperlipidemic effect of Duvalia corderoyi in rats with streptozotocin-induced diabetes. Saudi Journal of Biological Sciences, 27(3), 925–934. https://doi.org/10.1016/J.SJBS.2020.01.024
  • Al-Trad, B., Alkhateeb, H., Alsmadi, W., & Al-Zoubi, M. (2019). Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life sciences, 216, 183–188. https://doi.org/10.1016/J.LFS.2018.11.034
  • Aziz, M., Saeed, F., Ahmad, N., Ahmad, A., Afzaal, M., Hussain, S., Anjum, F. M., Mohamed, A. A & Alamri, M. S. (2021). Biochemical profile of milk thistle (Silybum Marianum L.) with special reference to silymarin content. Food Science & Nutrition, 9(1), 244–250. https://doi.org/10.1002/FSN3.1990
  • Banerjee, S., Bhattacharjee, P., Kar, A., & Mukherjee, P. K. (2019). LC–MS/MS analysis and network pharmacology of Trigonella foenum-graecum – a plant from Ayurveda against hyperlipidemia and hyperglycemia with combination synergy. Phytomedicine, 60, 152944. https://doi.org/10.1016/J.PHYMED.2019.152944
  • Baset, M. E., Ali, T. I., Elshamy, H., El Sadek, A. M., Sami, D. G., Badawy, M. T., Abdellatif, A., Abou-Zekry, S. S, Heiba, H. H & Saadeldin, M. K. (2020). Anti-diabetic effects of fenugreek (Trigonella foenum-graecum): A comparison between oral and intraperitoneal administration - an animal study. International Journal of Functional Nutrition, 1(1). 1–1. https://doi.org/10.3892/IJFN.2020.2.
  • Bhaskar Rao, P. (2018). Gas Chromatography-Mass spectrometry analysis for identification of bioactive compounds in selected genotypes of Trigonella foenum-graecum L. The Pharma Innovation Journal, 7(4), 929–939. Retrieved from. www.thepharmajournal.com
  • Bhutkar, M., & Bhise, S. (2013). In vitro hypoglycemic effects of Albizzia lebbeck and Mucuna pruriens. Asian Pacific Journal of Tropical Biomedicine, 3(11), 866. https://doi.org/10.1016/S2221-1691(13)60170-7
  • Bijak, M. (2017). Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 22(11), 1942. https://doi.org/10.3390/MOLECULES22111942
  • Bouderba, S., Sanchez-Martin, C., Villanueva, G. R., Detaille, D., & Koceïr, E. A. (2014). Beneficial effects of silibinin against the progression of metabolic syndrome, increased oxidative stress, and liver steatosis in Psammomys obesus, a relevant animal model of human obesity and diabetes. Journal of Diabetes, 6(2), 184–192. https://doi.org/10.1111/1753-0407.12083
  • Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/1099-157320000814:5%3C323:AID-PTR621%3E3.0.CO;2-Q
  • Cheng, K. C., Asakawa, A., Li, Y. X., Chung, H. H., Amitani, H., Ueki, T., Inui, A. & Cheng, J. T. (2014). Silymarin Induces Insulin Resistance through an Increase of Phosphatase and Tensin Homolog in Wistar Rats. Plos One, 9(1), e84550. https://doi.org/10.1371/JOURNAL.PONE.0084550
  • Deng, Y., Ma, Y., Liu, H., Zhang, Y., Wei, Z., Liu, G., Tang, X & Jia, X. (2022). Structure determination, bitterness evaluation and hepatic gluconeogenesis inhibitory activity of triterpenoids from the Momordica charantia fruit. Food Chemistry, 372, 131224. https://doi.org/10.1016/J.FOODCHEM.2021.131224
  • Ebrahimpour Koujan, S., Gargari, B. P., Mobasseri, M., Valizadeh, H., & Asghari-Jafarabadi, M. (2015). Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine, 22(2), 290–296. https://doi.org/10.1016/J.PHYMED.2014.12.010
  • Ebrahimpour-Koujan, S., Gargari, B. P., Mobasseri, M., Valizadeh, H., & Asghari-Jafarabadi, M. (2018). Lower glycemic indices and lipid profile among type 2 diabetes mellitus patients who received novel dose of Silybum marianum (L.) Gaertn. (silymarin) extract supplement: A Triple-blinded randomized controlled clinical trial. Phytomedicine, 44, 39–44. https://doi.org/10.1016/J.PHYMED.2018.03.050
  • E, P., J, R., S, N., & Ushio-Fukai, M. (2013). Protein tyrosine phosphatase 1B and insulin resistance: Role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. Plos One, 8(10), e77228. https://doi.org/10.1371/JOURNAL.PONE.0077228
  • Farooq Khan, M., Abutaha, N., Nasr, F. A., Alqahtani, A. S., Noman, O. M., & Wadaan, M. A. M. (2019). Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2599-0
  • Fortini, P., DiMarzio, P., Guarrera, P. M., & Iorizzi, M. (2016). Ethnobotanical study on the medicinal plants in the Mainarde Mountains (central-southern Apennine, Italy). Journal of Ethnopharmacology, 184, 208–218. https://doi.org/10.1016/J.JEP.2016.03.010
  • Gao, Y., Li, X., Huang, Y., Chen, J., & Qiu, M. (2021). Bitter Melon and Diabetes Mellitus. Food Reviews International, 1–21. https://doi.org/10.1080/87559129.2021.1923733
  • Gaonkar, V. P., & Hullatti, K. (2020). Indian Traditional medicinal plants as a source of potent Anti-diabetic agents: A Review. Journal of Diabetes & Metabolic Disorders, 19(2), 1895–1908. https://doi.org/10.1007/S40200-020-00628-8
  • González-Rodríguez, Á., Gutierrez, J. A. M., Sanz-González, S., Ros, M., Burks, D. J., & Valverde, Á. M. (2010). Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice. Diabetes, 59(3), 588–599. https://doi.org/10.2337/DB09-0796
  • Hartogh, D. J. D., & Tsiani, E. (2019). Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules, 9(3), 99. https://doi.org/10.3390/BIOM9030099
  • Holland, W., Morrison, T., Chang, Y., Wiernsperger, N., & Stith, B. J. (2004). Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase. Biochemical Pharmacology, 67(11), 2081–2091. https://doi.org/10.1016/J.BCP.2004.02.016
  • Jung, H. A., Bhakta, H. K., Min, B. S., & Choi, J. S. (2016). Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B. Archives of Pharmacal Research, 39(10), 1454–1464. https://doi.org/10.1007/S12272-016-0819-4
  • Kalailingam, P., Kannaian, B., Tamilmani, E., & Kaliaperumal, R. (2014). Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine, 21(10), 1154–1161. https://doi.org/10.1016/J.PHYMED.2014.04.005
  • Kan, J., Velliquette, R. A., Grann, K., Burns, C. R., Scholten, J., Tian, F., Zhang, Q & Gui, M. (2017). A novel botanical formula prevents diabetes by improving insulin resistance. BMC Complementary and Alternative Medicine, 17(1), 1–10. https://doi.org/10.1186/S12906-017-1848-3/FIGURES/6
  • Karimi, G., Vahabzadeh, M., Lari, P., Rashedinia, M., & Moshiri, M. (2011). “Silymarin”, a Promising Pharmacological Agent for Treatment of Diseases. Iranian Journal of Basic Medical Sciences, 14(4), 308. Retrieved from/pmc/articles/PMC3586829/.
  • Kaur, K. K., Allahbadia, G., & Singh, M. (2021). Role of Trigonella foenum-graecim Extract along with Ursolic Acid a Pentacyclic Triterpenoid as Newer Plant Products for the Therapy of Diabetes Mellitus - a Short Communication. Acta scientific nutritional Health, 5(6), 12–15. https://doi.org/10.31080/ASNH.2020.05.0875
  • Khan, M. F., Rawat, A. K., Khatoon, S., Hussain, M. K., Mishra, A., & Negi, D. S. (2018). In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integrative Medicine Research, 7(2), 176. https://doi.org/10.1016/J.IMR.2018.03.004
  • Kim, B. -R., Kim, H. M., Jin, C. H., Kang, S. -Y., Kim, J. -B., Jeon, Y. G., Park, K. Y , Lee, I. S & Han, A. -R. (2020). Composition and Antioxidant Activities of Volatile Organic Compounds in Radiation-Bred Coreopsis Cultivars. Plants, 9(6), 717. https://doi.org/10.3390/plants9060717
  • Köksal, E., Gülçin, İ., Beyza, S., Sarikaya, Ö., Bursal, E., Ko¨ksal, E., & Sarikaya, Z. (2009). In vitro antioxidant activity of silymarin. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 395–405. https://doi.org/10.1080/14756360802188081
  • Koren, S., & Fantus, I. G. (2007). Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Practice & Research Clinical Endocrinology & Metabolism, 21(4), 621–640. https://doi.org/10.1016/J.BEEM.2007.08.004
  • Krishnamoorthy, K., & Subramaniam, P. (2014). Phytochemical Profiling of Leaf, Stem, and Tuber Parts of Solena amplexicaulis (Lam.) Gandhi Using GC-MS. International Scholarly Research Notices, 2014, 1–13. https://doi.org/10.1155/2014/567409
  • Liu, Z. Q., Liu, T., Chen, C., Li, M. Y., Wang, Z. Y., Chen, R. S., Wei, G. X, Wang, X. Y & Luo, D. Q. (2015). Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicology and Applied Pharmacology, 285(1), 61–70. https://doi.org/10.1016/J.TAAP.2015.03.011
  • Li, H. B., Yang, Y. R. Y., Mo, Z. J., Ding, Y., & Jiang, W. J. (2015). Silibinin improves palmitate-induced insulin resistance in C2C12 myotubes by attenuating IRS-1/pi3k/akt pathway inhibition. Brazilian Journal of Medical and Biological Research, 48(5), 440–446. https://doi.org/10.1590/1414-431X20144238
  • Lori, G., Cecchi, L., Mulinacci, N., Melani, F., Caselli, A., Cirri, P., Pazzagli, L, Luti, S, Mazzoli, L Paoli, P. (2019). Honey extracts inhibit PTP1B, upregulate insulin receptor expression, and enhance glucose uptake in human HepG2 cells. Biomedicine & Pharmacotherapy, 113, 108752. https://doi.org/10.1016/J.BIOPHA.2019.108752
  • MacDonald-Ramos, K., Michán, L., Martínez-Ibarra, A., & Cerbón, M. (2021). Silymarin is an ally against insulin resistance: A review. Annals of Hepatology, 23, 100255. https://doi.org/10.1016/J.AOHEP.2020.08.072
  • Marmouzi, I., Bouyahya, A., Ezzat, S. M., El Jemli, M., & Kharbach, M. (2021). The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. Journal of Ethnopharmacology, 265, 113303. https://doi.org/10.1016/J.JEP.2020.113303
  • Ma, Y. M., Tao, R. Y., Liu, Q., Li, J., Tian, J. Y., Zhang, X. L., Xiao, Z. Y, & Ye, F. (2011). PTP1B inhibitor improves both insulin resistance and lipid abnormalities in vivo and in vitro. Molecular and Cellular Biochemistry, 357(1–2), 65–72. https://doi.org/10.1007/S11010-011-0876-4
  • Matter Al-Maliki, A. D., & Mahmmed Al-Obaid, N. A. (2016). Hypoglycemic Action of Synergistic Interaction of Phenolic Compounds Isolated from Iraqi Phoenix dactylifera (Breim) Leaflets in Alloxan – Induced Diabetic Rabbits | Al-Maliki |. Journal of Natural Sciences Research, 6(12). Retrieved from https://iiste.org/Journals/index.php/JNSR/article/view/31351
  • Ma, C., Yu, H., Xiao, Y., & Wang, H. (2017). Momordica charantia extracts ameliorate insulin resistance by regulating the expression of SOCS-3 and JNK in type 2 diabetes mellitus rats. Pharmaceutical Biology, 55(1), 2170–2177. https://doi.org/10.1080/13880209.2017.1396350
  • Moukette, B. M., Moor, V. J. A., Nya, C. P. B., Nanfack, P., Nzufo, F. T., Kenfack, M. A., Ngogang, J. Y, & Pieme, C. A. (2017). Antioxidant and Synergistic Antidiabetic Activities of a Three-Plant Preparation Used in Cameroon Folk Medicine. International Scholarly Research Notices, 2017, 1–7. https://doi.org/10.1155/2017/9501675
  • Nasri, H., & Rafieian-Kopaei, M. (2014). Metformin: Current knowledge. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 19(7), 658. Retrieved from/pmc/articles/PMC4214027/.
  • Nhung, N. H., Hang, T. T. T., Linh, V. K., Kim, N. B., Hai, P. T., Minh, P. H., & Tung, B. T. (2021). Evaluating Protein Tyrosine Phosphatase 1B Inhibitory Activity of Bioactive Compounds from Momordica charantia for Diabetes Treatment Type 2 by using Molecular Docking Method. VNU Journal of Science: Medical and Pharmaceutical Sciences, 37(2), 39–49. https://doi.org/10.25073/2588-1132/VNUMPS.4298
  • Ningbo, Q., Sasaki, T., Li, W., Wang, J., Zhang, X., Li, D., Li, Z, Cheng, M, Hua, H, & Koike, K. (2018). Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1283–1291. https://doi.org/10.1080/14756366.2018.1497020
  • Nurmaylindha, V., Widodo, G. P., & Herowati, R. (2020). Molecular docking analysis of Leucaena leucocephala and Trigonella foenum-graecum chemical constituents on antidiabetic macromolecular targets and prediction of the pharmacokinetic profiles. AIP Conference Proceedings, 2243(1), 020015. https://doi.org/10.1063/5.0006279
  • Padma, M., Ganesan, S., Jayaseelan, T., Azhagumadhavan, S., Sasikala, P., Senthilkumar, S., & Mani, P. (2019). Phytochemical screening and GC–MS analysis of bioactive compounds present in ethanolic leaves extract of Silybum marianum (L). Journal of Drug Delivery and Therapeutics, 9(1), 85–89. https://doi.org/10.22270/JDDT.V9I1.2174
  • Paudel, P., Yu, T., Seong, S. H., Kuk, E. B., Jung, H. A., & Choi, J. S. (2018). Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An in vitro and in silico Study. International Journal of Molecular Sciences, 19(5), 1542. https://doi.org/10.3390/IJMS19051542
  • Paul, S., & Majumdar, M. (2021). In-Vitro Antidiabetic Propensities, Phytochemical Analysis, and Mechanism of Action of Commercial Antidiabetic Polyherbal Formulation “Mehon. Proceedings MDPI, 79(1), 7. https://doi.org/10.3390/iecbm2020-08805
  • Perera, W. H., Shivanagoudra, S. R., Pérez, J. L., Kim, D. M., Sun, Y., Jayaprakasha, G. K., & Patil, B. S. (2021). Anti-Inflammatory, Antidiabetic Properties and in silico Modeling of Cucurbitane-Type Triterpene Glycosides from Fruits of an Indian Cultivar of Momordica charantia L. Molecules, 26(4), 1038. https://doi.org/10.3390/MOLECULES26041038
  • Perumal, N., Nallappan, M., Shohaimi, S., Kassim, N. K., Tee, T. T., & Cheah, Y. H. (2022). Synergistic antidiabetic activity of Taraxacum officinale (L.) Weber ex F.H.Wigg and Momordica charantia L. polyherbal combination. Biomedicine & Pharmacotherapy, 145, 112401. https://doi.org/10.1016/J.BIOPHA.2021.112401
  • Pham, H. T. T., Ryu, B., Cho, H. M., Lee, B. W., Yang, W. Y., Park, E. J., Tran, V. O, & Oh, W. K. (2020). Oleanane hemiacetal glycosides from Gymnema latifolium and their inhibitory effects on protein tyrosine phosphatase 1B. Phytochemistry, 170, 112181. https://doi.org/10.1016/J.PHYTOCHEM.2019.112181
  • Prabhakar, P. K., & Sivakumar, P. M. (2019). Protein Tyrosine Phosphatase 1B Inhibitors: A Novel Therapeutic Strategy for the Management of type 2 Diabetes Mellitus. Current pharmaceutical design, 25(23), 2526–2539. https://doi.org/10.2174/1381612825666190716102901
  • Prachayasittikul, S., Suphapong, S., Worachartcheewan, A., Lawung, R., Ruchirawat, S., & Prachayasittikul, V. (2009). Bioactive Metabolites from Spilanthes acmella Murr. Molecules, 14(2), 850–867. https://doi.org/10.3390/MOLECULES14020850
  • Qadir, A., Khan, N., Arif, M., Warsi, M. H., Ullah, S. N. M. N., & Yusuf, M. (2022). GC–MS analysis of phytoconstituents present in Trigonella foenumgraecum L. seeds extract and its antioxidant activity. Journal of the Indian Chemical Society, 99(6), 100503. https://doi.org/10.1016/J.JICS.2022.100503
  • Qin, N. B., Jia, C. C., Xu, J., Li, D. H., Xu, F. X., Bai, J., Li, Z. L., & Hua, H. M. (2017). New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities. Fitoterapia, 119, 83–89. https://doi.org/10.1016/J.FITOTE.2017.04.008
  • Rao, A. S., Reddy, S. G., Babu, P. P., & Reddy, A. R. (2010). The antioxidant and antiproliferative activities of methanolic extracts from Njavara rice bran. BMC Complementary and Alternative Medicine, 10(4), Retrieved from http://www.biomedcentral.com/1472-6882/10/4.
  • Rashmi, S. S., & Manonmani, H. K. (2020). A Triterpene Glycoside Fraction, TG from Gymnema sylvestre Ameliorates Insulin Resistance by Stimulating Glucose Uptake in 3T3L1 Adipocytes and C2C12 Skeletal Muscle Cells. Journal of Biosciences and Medicines, 8(11), 137–151. https://doi.org/10.4236/JBM.2020.811013
  • Rath, P., Ranjan, A., Chauhan, A., Verma, N. K., Bhargava, A., Prasad, R., & Jindal, T. (2022). A critical review on role of available synthetic drugs and phytochemicals in insulin resistance treatment by Targeting PTP1B. Applied Biochemistry and Biotechnology, 2022(10), 1–19. https://doi.org/10.1007/S12010-022-04028-X
  • Rath, P., Ranjan, A., Chauhan, A., Verma, N. K., & Jindal, T. (2022). QSAR studies of flavonoids and isoflavonoids with PTP1B: A potential pharmacological target for the treatment of insulin resistance. Asian Journal of Chemistry, 34(4), 1027–1038. https://doi.org/10.14233/AJCHEM.2022.23784
  • Rath, P., Ranjan, A., Ghosh, A., Chauhan, A., Gurnani, M., Tuli, H. S.,Habeeballah H, Alkhanani, M. F, Haque, S, Dhama, K, & Jindal, T. (2022). Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure–Activity Relationship. Molecules, 27(7), 2212. https://doi.org/10.3390/MOLECULES27072212
  • Ravichandiran, K., & Parani, M. (2021). Comparative GC-MS analysis of methanolic extracts from different parts of bitter gourd (Momordica charantia L.) fruit. Undefined, 9(3), 102–107. https://doi.org/10.12691/JFNR-9-3-1
  • Ravichandiran, K., & Parani, M. (2022). Comparative analysis of the metabolites from the rind, pulp and seeds of two varieties of bitter gourd using Gas Chromatography-Mass Spectrometry (GC-MS). Research Journal of Biotechnology, 17(11), 37–43. https://doi.org/10.25303/1711rjbt37043
  • Regginato, A., Cunico, L., Bertoncello, K. T., Schindler, Z., Chitolina, R., Marins, K., Calisto, J. F, Oliveira, J. V, Magro, J. D & Zanatta, L. (2021). Antidiabetic and hypolipidemic potential of Campomanesia xanthocarpa seed extract obtained by supercritical CO2. Brazilian Journal of Biology, 81(3), 621–631. https://doi.org/10.1590/1519-6984.227388
  • Rehman, G., Hamayun, M., Iqbal, A., Ul Islam, S., Arshad, S., Zaman, K., Ahmad, A, Shehzad, A, Hussain, A, & Lee, I. (2018). In vitro antidiabetic effects and antioxidant potential of cassia nemophila pods. BioMed Research International, 2018, 1–6. https://doi.org/10.1155/2018/1824790
  • Sette de Souza, P. H., Souza, B. A. A., Costa, M. J. F., & da Costa Araújo, F. A. (2021). Kuguacin: Biological activities of triterpenoid from Momordica charantia—a scoping review. Advances in Traditional Medicine, 2021, 1–8. https://doi.org/10.1007/S13596-021-00587-2
  • Shah, M. R., Ishtiaq Hizbullah, S. M., Zarrelli, S., Habtemariam, A., Muhammad, A., Collina, S, & Khan, I. (2016). Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(4), 563–567. https://doi.org/10.3109/14756366.2015.1047358
  • Sharma, H., Kumar, P., Deshmukh, R. R., Bishayee, A., & Kumar, S. (2018). Pentacyclic triterpenes: New tools to fight metabolic syndrome. Phytomedicine, 50, 166–177. https://doi.org/10.1016/J.PHYMED.2018.09.011
  • Stolf, A. M., Cardoso, C. C., & Acco, A. (2017). Effects of Silymarin on Diabetes Mellitus Complications: A Review. Phytotherapy Research, 31(3), 366–374. https://doi.org/10.1002/PTR.5768
  • Thirunavukkarasu, K., Rajkumar, P., Selvaraj, S., & Kumaresan, S. (2016). GC-MS analysis of Gymnema sylvestre leaves methanolic extract for antidiabetic and anticancer drug identification. Journal of Chemical and Pharmaceutical Sciences, 9(2), 1011–1013.
  • Tung, P. H. T. (2019). Targeted classification, identification and metabolite profiling of triterpenoids in the genus Gymnema and Gynostemma by developing a building block strategy using UHPLC-QTOF/MS.
  • Udrea, A. M., Gradisteanu Pircalabioru, G., Boboc, A. A., Mares, C., Dinache, A., Mernea, M., & Avram, S. (2021). Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules, 11(11), 1692. https://doi.org/10.3390/BIOM11111692
  • Viktorova, J., Stranska-Zachariasova, M., Fenclova, M., Vitek, L., Hajslova, J., Kren, V., & Ruml, T. (2019). Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. Antioxidants, 8(8), 317. https://doi.org/10.3390/ANTIOX8080317
  • Wang, X., Zhang, Z., & Wu, S. C. (2020). Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. Journal of Agricultural and Food Chemistry, 68(42), 11644–11664. https://doi.org/10.1021/ACS.JAFC.0C04791
  • Wang, Z. Q., Zhang, X. H., Yu, Y., Poulev, A., Ribnicky, D., Floyd, Z. E., & Cefalu, W. T. (2011). Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice. The Journal of Nutritional Biochemistry, 22(11), 1064–1073. https://doi.org/10.1016/J.JNUTBIO.2010.09.004
  • White, P. E., Król, E., Szwengiel, A., Tubacka, M., Szczepankiewicz, D., Staniek, H., Vincent, J. B Krejpcio, Z. (2021). Effects of bitter melon and a chromium propionate complex on symptoms of insulin resistance and type 2 Diabetes in Rat Models. Biological trace element research, 199(3), 1013–1026. https://doi.org/10.1007/S12011-020-02202-Y/FIGURES/4
  • Williamson, E. M. (2001). Synergy and other interactions in phytomedicines. Phytomedicine, 8(5), 401–409. https://doi.org/10.1078/0944-7113-00060
  • Woo, H. S., Im, H. J., Kim, J. Y., Lee, M. S., & Kim, D. W. (2021). Mechanism of protein tyrosine phosphatase 1B inhibition by theaflavanoside IV isolated from methanolic extract of tea (Camellia sinensis) seed shells. Natural Product Research, 36(12), 3189–3192. https://doi.org/10.1080/14786419.2021.1952576
  • Xu, J., Li, L., Qian, Z., Hong, J., Shen, S., & Huang, W. (2005). Reduction of PTP1B by RNAi upregulates the activity of insulin controlled fatty acid synthase promoter. Biochemical and Biophysical Research Communications, 329(2), 538–543. https://doi.org/10.1016/J.BBRC.2005.02.016
  • Yagubova, S., Taraban, K., & Ostrovskaya, R. (2017). Inductor of neurotrophic factors, 4-methylcatechol, exerts antidiabetic effects. Journal of Diabetes & Metabolism, 08(01), 2155–6156. https://doi.org/10.4172/2155-6156.C1.064
  • Yang, S. J., Paudel, P., Shrestha, S., Seong, S. H., Jung, H. A., & Choi, J. S. (2019). In vitro protein tyrosine phosphatase 1B inhibition and antioxidant property of different onion peel cultivars: A comparative study. Food Science & Nutrition, 7(1), 205. https://doi.org/10.1002/FSN3.863
  • Yang, X., Zhao, Y., Sun, Q., Yang, Y., Gao, Y., Ge, W., Liu, J, Xu, X, Weng, D, Wang, S Zhang, J. (2019). Adenine nucleotide-mediated regulation of hepatic PTP1B activity in mouse models of type 2 diabetes. Diabetologia, 62(11), 2106–2117. https://doi.org/10.1007/S00125-019-04971-1/FIGURES/7
  • Yue, J., Xu, J., Cao, J., Zhang, X., & Zhao, Y. (2017). Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). Journal of Functional Foods, 37, 624–631. https://doi.org/10.1016/J.JFF.2017.07.041
  • Zaky, A. S., Kandeil, M., Abdel-Gabbar, M., Fahmy, E. M., Almehmadi, M. M., Ali, T. M., & Ahmed, M. O. (2022). The Antidiabetic Effects and Modes of Action of the Balanites aegyptiaca Fruit and Seed Aqueous Extracts in NA/STZ-Induced Diabetic Rats. Pharmaceutics, 14(2), 263. https://doi.org/10.3390/pharmaceutics14020263
  • Zeng, K., He, Y. N., Yang, D., Cao, J. Q., Xia, X. C., Zhang, S. J., Bi, X. L, & Zhao, Y. Q. (2014). New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B. European Journal of Medicinal Chemistry, 81, 176–180. https://doi.org/10.1016/J.EJMECH.2014.01.066
  • Zhang, X., Tian, J., Li, J., Huang, L., Wu, S., Liang, W., Zhong, L, Ye, J, & Ye, F. (2016). A novel protein tyrosine phosphatase 1B inhibitor with therapeutic potential for insulin resistance. British Journal of Pharmacology, 173(12), 1939–1949. https://doi.org/10.1111/BPH.13483
  • Zhou, X., Wang, L. L., Tang, W. J., & Tang, B. (2021). Astragaloside IV inhibits protein tyrosine phosphatase 1B and improves insulin resistance in insulin-resistant HepG2 cells and triglyceride accumulation in oleic acid (OA)-treated HepG2 cells. Journal of Ethnopharmacology, 268, 113556. https://doi.org/10.1016/J.JEP.2020.113556
  • Zhou, Y. X., Xin, H. L., Rahman, K., Wang, S. J., Peng, C., & Zhang, H. (2015). Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/925631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.