217
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept

ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Mar 2023, Accepted 10 May 2023, Published online: 17 May 2023

References

  • Abarca, R. L., Rodriguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968–975. https://doi.org/10.1016/j.foodchem.2015.10.023
  • Abdelwahed, W., Degobert, G., Stainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58(15), 1688e1713.
  • Álvarez-Henao, M. V., Saavedra, N., Medina, S., Cartagena, C. J., Alzate, L. M., & Londoño-Londoño, J. (2018). Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chemistry, 256, 181–187. https://doi.org/10.1016/j.foodchem.2018.02.059
  • Arab, M., Hosseini, S. M., Nayebzadeh, K., Khorshidian, N., Yousefi, M., Razavi, S. H., & Mortazavian, A. M. (2019). Microencapsulation of microbial canthaxanthin with alginate and high methoxyl pectin and evaluation the release properties in neutral and acidic condition. International Journal of Biological Macromolecules, 121, 691–698. https://doi.org/10.1016/j.ijbiomac.2018.10.114
  • Arun Kumar, R., Prashanth, K. V. H., & Baskaran, V. (2013). Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: Characterization and bioavailability of lutein in vitro and in vivo. Food Chemistry, 141(1), 327–337. https://doi.org/10.1016/j.foodchem.2013.02.108
  • Bai, C., Zheng, J., Zhao, L., Chen, L., Xiong, H., & McClements, D. J. (2018). Development of oral delivery systems with enhanced antioxidant and anticancer activity: Coix seed oil and β-carotene coloaded liposomes. Journal of Agricultural & Food Chemistry, 67(1), 406–414. https://doi.org/10.1021/acs.jafc.8b04879
  • Bangham, A. D. (1993). Liposomes: The Babraham connection. Chemistry and Physics of Lipids, 64(1–3), 275–285. https://doi.org/10.1016/0009-3084(93)90071-A
  • Bera, S. (2019). Carotenoids: Updates on legal statutory and competence for nutraceutical properties. Current Research in Nutrition and Food Science, 7(2), 300.
  • Bera, S. (2020). Carotenoid accumulation in Dietzia maris NITD protects from macromolecular damage. BioTechnologia Journal of Biotechnology Computational Biology and Bionanotechnology, 101(3), 171–178. https://doi.org/10.5114/bta.2020.97876
  • Bera, S., Bharadwaj, V., Chaudhuri, S., & Dutta, D. (2015). Strong antioxidant property of bacterial canthaxanthin obtained by raw coconut water supplementation as an additional nutrient source. In Proceedings of 2015 International Conference on Bio-Medical Engineering and Environmental Technology, London, United Kingdom (pp. 129–136).
  • Bera, S., Chaudhuri, S., & Dutta, D. (2017). Stability and antioxidant activity of bacterial canthaxanthin in aloe vera model system. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(4), 1169–1179.
  • Bera, S., & Dutta, D. (2017). Encapsulation and release of a bacterial carotenoid from hydrogel matrix: Characterization, kinetics and antioxidant study. Engineering in Life Sciences, 17(7), 739–748. https://doi.org/10.1002/elsc.201600238
  • Blanch, G. P., Del Castillo, M. L. R., Del Mar Caja, M., Pérez-Méndez, M., & Sánchez-Cortés, S. (2007). Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins. Food Chemistry, 105(4), 1335–1341. https://doi.org/10.1016/j.foodchem.2007.04.060
  • Boonlao, N., Ruktanonchai, U. R., & Anal, A. K. (2022). Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids and Surfaces. B, Biointerfaces, 209, 112211. https://doi.org/10.1016/j.colsurfb.2021.112211
  • Botrel, D. A., Borges, S. V., Fernandes, R. V. D. B., & Lourenço Do Carmo, E. (2014). Optimization of fish oil spray drying using a protein: Inulin system. Drying Technology, 32(3), 279–290. https://doi.org/10.1080/07373937.2013.823621
  • Brito‐oliveira, T. C., Molina, C. V., Netto, F. M., & Pinho, S. C. (2017). Encapsulation of Beta‐carotene in lipid microparticles stabilized with hydrolyzed soy protein isolate: production parameters, alpha‐tocopherol coencapsulation and stability under stress conditions. Journal of Food Science, 82(3), 659–669. https://doi.org/10.1111/1750-3841.13642
  • Bruni, G. P., de Oliveira, J. P., Gómez-Mascaraque, L. G., Fabra, M. J., Martins, V. G., da Rosa Zavareze, E., & López-Rubio, A. (2020). Electrospun β-carotene–loaded SPI: PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packaging and Shelf Life, 23, 100426. https://doi.org/10.1016/j.fpsl.2019.100426
  • Bustamante, A., Masson, L., Velasco, J., Del Valle, J. M., & Robert, P. (2016). Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol. Food Chemistry, 190, 1013–1021. https://doi.org/10.1016/j.foodchem.2015.06.062
  • Bustos-Garza, C., Yanez-Fernandez, J., & Barragan-Huerta, B. E. (2013). Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Research International, 54(1), 641–649. https://doi.org/10.1016/j.foodres.2013.07.061
  • Campardelli, R., Adami, R., Della Porta, G., & Reverchon, E. (2012). Nanoparticle precipitation by supercritical assisted injection in a liquid antisolvent. Chemical Engineering Journal, 192, 246–251. https://doi.org/10.1016/j.cej.2012.04.010
  • Campardelli, R., Adami, R., & Reverchon, E. (2012). Preparation of stable aqueous nanodispersions of β-carotene by supercritical assisted injection in a liquid antisolvent. Procedia Engineering, 42, 1493–1501. https://doi.org/10.1016/j.proeng.2012.07.542
  • Campardelli, R., Baldino, L., & Reverchon, E. (2015). Supercritical fluids applications in nanomedicine. The Journal of Supercritical Fluids, 101, 193–214. https://doi.org/10.1016/j.supflu.2015.01.030
  • Can, Q. U. A. N., Johan, C., & Charlotta, T. (2009). Carotenoids particle formation by supercritical fluid technologies. Chinese Journal of Chemical Engineering, 17(2), 344–349. https://doi.org/10.1016/S1004-9541(08)60214-1
  • Carvalho, J. M., Toniazzo, T., Cavalcanti, L. P., Moraes, I. C., Oliveira, C. L., & Pinho, S. C. (2015). Physico-chemical stability and structural characterization of thickened multilamellar beta-carotene-loaded liposome dispersions produced using a proliposome method. Colloid and Polymer Science, 293(8), 2171–2179. https://doi.org/10.1007/s00396-015-3594-8
  • Celik, S. E., Bekdeser, B., Tufan, A. N., & Apak, R. (2017). Modified radical scavenging and antioxidant activity measurement of β-Carotene with β-Cyclodextrins complexation in aqueous medium. Analytical Sciences, 33(3), 299–305. https://doi.org/10.2116/analsci.33.299
  • Celitan, E., Gruskiene, R., Kavleiskaja, T., & Sereikaite, J. (2022). β-Carotene-2-hydroxypropyl-β-cyclodextrin complexes coated with pectin. Food Hydrocolloids, 133, 107990. https://doi.org/10.1016/j.foodhyd.2022.107990
  • Chakraborty, S., Liao, I. C., Adler, A., & Leong, K. W. (2009). Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews, 61(12), 1043–1054. https://doi.org/10.1016/j.addr.2009.07.013
  • Chang, H. I., Shao, C. W., Huang, E., & Huang, K. Y. (2022). Development of astaxanthin-loaded nanosized liposomal formulation to improve bone health. Pharmaceuticals, 15(4), 490. https://doi.org/10.3390/ph15040490
  • Charpashlo, E., Ghorani, B., & Mohebbi, M. (2021). Multilayered electrospinning strategy for increasing the bioaccessibility of lycopene in gelatin-based sub-micron fiber structures. Food Hydrocolloids, 113, 106411. https://doi.org/10.1016/j.foodhyd.2020.106411
  • Cheng, C., Gao, Y., Wu, Z., Miao, J., Gao, H., Ma, L., Zou, L., Peng, S., Liu, C., & Liu, W. (2020). Gliadin nanoparticles pickering emulgels for β-carotene delivery: Effect of particle concentration on the stability and bioaccessibility. Molecules, 25(18), 4188. https://doi.org/10.3390/molecules25184188
  • Chen, J., Li, F., Li, Z., McClements, D. J., & Xiao, H. (2017). Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocolloids, 69, 49–55. https://doi.org/10.1016/j.foodhyd.2017.01.024
  • Chen, L., Liu, X., Li, D., Chen, W., Zhang, K., & Chen, S. (2016). Preparation of stable microcapsules from disrupted cell of Haematococcus pluvialis by spray drying. International Journal of Food Science & Technology, 51(8), 1834–1843. https://doi.org/10.1111/ijfs.13155
  • Chiu, C. H., Chang, C. C., Lin, S. T., Chyau, C. C., & Peng, R. Y. (2016). Improved hepatoprotective effect of liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity. International Journal of Molecular Sciences, 17(7), 1128. https://doi.org/10.3390/ijms17071128
  • Chuacharoen, T., & Sabliov, C. M. (2016). Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 503, 11–18. https://doi.org/10.1016/j.colsurfa.2016.04.038
  • Comunian, T. A., Silva, M. P., Moraes, I. C. F., & Favaro-Trindade, C. S. (2020). Reducing carotenoid loss during storage by co-encapsulation of pequi and buriti oils in oil-in-water emulsions followed by freeze-drying: Use of heated and unheated whey protein isolates as emulsifiers. Food Research International, 130, 108901. https://doi.org/10.1016/j.foodres.2019.108901
  • Coronel-Aguilera, C. P., & San Martín-González, M. F. (2015). Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. Lwt-Food Science and Technology, 62(1), 187–193. https://doi.org/10.1016/j.lwt.2014.12.036
  • Corrêa-Filho, L. C., Lourenço, S. C., Duarte, D. F., Moldão-Martins, M., & Alves, V. D. (2019). Microencapsulation of tomato (Solanum lycopersicum L.) pomace ethanolic extract by spray drying: Optimization of process conditions. Applied Sciences, 9(3), 612. https://doi.org/10.3390/app9030612
  • Dai, J., Kim, S. M., Shin, I. S., Dai Kim, J., Lee, H. Y., Shin, W. C., & Kim, J. C. (2014). Preparation and stability of fucoxanthin-loaded microemulsions. Journal of Industrial & Engineering Chemistry, 20(4), 2103–2110. https://doi.org/10.1016/j.jiec.2013.09.039
  • Daneshvar, A., Jouzdani, A. F., Firozian, F., Asl, S. S., Mohammadi, M., & Ranjbar, A. (2022). Neuroprotective effects of crocin and crocin-loaded niosomes against the paraquat-induced oxidative brain damage in rats. Open Life Sciences, 17(1), 1174–1181. https://doi.org/10.1515/biol-2022-0468
  • de Campo, C., Dick, M., dos Santos, P. P., Costa, T. M. H., Paese, K., Guterres, S. S., de Oliveira Rios, A., & Flôres, S. H. (2018). Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: Characterization and stability evaluation under different temperatures. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 558, 410–421. https://doi.org/10.1016/j.colsurfa.2018.09.009
  • de Freitas Santos, P. D., Rubio, F. T. V., da Silva, M. P., Pinho, L. S., & Favaro-Trindade, C. S. (2021). Microencapsulation of carotenoid-rich materials: A review. Food Research International, 147, 110571. https://doi.org/10.1016/j.foodres.2021.110571
  • de Freitas Zômpero, R. H., López-Rubio, A., de Pinho, S. C., Lagaron, J. M., & de la Torre, L. G. (2015). Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces. B, Biointerfaces, 134, 475–482. https://doi.org/10.1016/j.colsurfb.2015.03.015
  • de Jesús Bonilla-Ahumada, F., Khandual, S., & Del Carmen Lugo-Cervantes, E. (2018). Microencapsulation of algal biomass (Tetraselmis chuii) by spray-drying using different encapsulation materials for better preservation of beta-carotene and antioxidant compounds. Algal Research, 36, 229–238. https://doi.org/10.1016/j.algal.2018.10.006
  • Deligkaris, K., Tadele, T. S., Olthuis, W., & van den Berg, A. (2010). Hydrogel-based devices for biomedical applications. Sensors and Actuators. B, Chemical, 147(2), 765–774. https://doi.org/10.1016/j.snb.2010.03.083
  • Deng, X. X., Chen, Z., Huang, Q., Fu, X., & Tang, C. H. (2014). Spray‐drying microencapsulation of β‐carotene by soy protein isolate and/or OSA‐modified starch. Journal of Applied Polymer Science, 131(12). https://doi.org/10.1002/app.40399
  • de Oliveira, G. L. R., Medeiros, I., da Cruz Nascimento, S. S., Viana, R. L. S., Porto, D. L., Rocha, H. A. O., Aragão, C. F. S., Maciel, B. L. L., de Assis, C. F., de Araújo Morais, A. H., & Passos, T. S. (2021). Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chemistry, 348, 129055. https://doi.org/10.1016/j.foodchem.2021.129055
  • de Paz, E., Martín, Á., Bartolomé, A., Largo, M., & Cocero, M. J. (2014). Development of water-soluble β-carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloids, 37, 14–24. https://doi.org/10.1016/j.foodhyd.2013.10.011
  • de Paz, E., Martín, Á., Mateos, E., & Cocero, M. J. (2013). Production of water-soluble β-carotene micellar formulations by novel emulsion techniques. Chemical Engineering and Processing: Process Intensification, 74, 90–96. https://doi.org/10.1016/j.cep.2013.09.004
  • de Souza Mesquita, L. M., Martins, M., Maricato, É., Nunes, C., Quinteiro, P. S., Dias, A. C., Coutinho, J. A., Pisani, L. P., de Rosso, V. V., & Ventura, S. P. (2020). Ionic liquid-mediated recovery of carotenoids from the Bactris gasipaes fruit waste and their application in food-packaging chitosan films. ACS Sustainable Chemistry & Engineering, 8(10), 4085–4095. https://doi.org/10.1021/acssuschemeng.9b06424
  • Dias, M. I., Ferreira, I., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035e1052.
  • Do Prado Silva, J. T., Geiss, J. M. T., Oliveira, S. M., da Silva Brum, E., Sagae, S. C., Becker, D., Leimann, F. V., Ineu, R. P., Guerra, G. P., & Goncalves, O. H. (2017). Nanoencapsulation of lutein and its effect on mice’s declarative memory. Materials Science & Engineering C, 76, 1005–1011. https://doi.org/10.1016/j.msec.2017.03.212
  • dos Santos, P. P., Paese, K., Guterres, S. S., Pohlmann, A. R., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2016). Stability study of lycopene-loaded lipid-core nanocapsules under temperature and photosensitization. Lwt-Food Science and Technology, 71, 190–195. https://doi.org/10.1016/j.lwt.2016.03.036
  • Drosou, C., Krokida, M., & Biliaderis, C. G. (2022). Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocolloids, 133, 107949. https://doi.org/10.1016/j.foodhyd.2022.107949
  • Dutta, D., Chaudhuri, U. R., & Chakraborty, R. (2009). Degradation of total carotenoids and texture in frozen pumpkins when kept for storage under varying conditions of time and temperature. International Journal of Food Sciences and Nutrition, 60(sup1), 17–26. https://doi.org/10.1080/09637480701850220
  • Dutta, D., Raychaudhuri, U., & Chakraborty, R. (2005). Retention of β-carotene in frozen carrots under varying conditions of temperature and time of storage. African Journal of Biotechnology, 4(1), 102.
  • Elik, A., Yanık, D. K., & Göğüş, F. (2021). A comparative study of encapsulation of carotenoid enriched-flaxseed oil and flaxseed oil by spray freeze-drying and spray drying techniques. LWT, 143, 111153. https://doi.org/10.1016/j.lwt.2021.111153
  • Elkholy, N. S., Shafaa, M. W., & Mohammed, H. S. (2020). Biophysical characterization of lutein or beta carotene-loaded cationic liposomes. RSC Advances, 10(54), 32409–32422. https://doi.org/10.1039/D0RA05683A
  • Elkholy, N. S., Shafaa, M. W., & Mohammed, H. S. (2021). Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochimica Et Biophysica Acta (BBA)-Molecular Basis of Disease, 1867(7), 166150. https://doi.org/10.1016/j.bbadis.2021.166150
  • Esposto, B. S., Pinho, S. G. B., Thomazini, M., Ramos, A. P., Tapia-Blácido, D. R., & Martelli-Tosi, M. (2022). TPP-chitosomes as potential encapsulation system to protect carotenoid-rich extract obtained from carrot by-product: A comparison with liposomes and chitosomes. Food Chemistry, 397, 133857. https://doi.org/10.1016/j.foodchem.2022.133857
  • Etzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3, 73–81. https://doi.org/10.1016/j.crfs.2020.03.002
  • Fabra, M. J., López‐rubio, A., Sentandreu, E., & Lagaron, J. M. (2015). Development of multilayer corn starch‐based food packaging structures containing β‐carotene by means of the electro‐hydrodynamic processing. Starch‐Starke, 68(7–8), 603–610. https://doi.org/10.1002/star.201500154
  • Fattahi, A., Karimi-Sabet, J., Keshavarz, A., Golzary, A., Rafiee-Tehrani, M., & Dorkoosh, F. A. (2016). Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. The Journal of Supercritical Fluids, 107, 469–478. https://doi.org/10.1016/j.supflu.2015.05.013
  • Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427–1432. https://doi.org/10.1016/j.foodhyd.2008.10.011
  • Fratter, A., Biagi, D., & Cicero, A. F. (2019). Sublingual delivery of astaxanthin through a novel ascorbyl palmitate-based nanoemulsion: Preliminary data. Marine Drugs, 17(9), 508. https://doi.org/10.3390/md17090508
  • Frömming, K. H., & Szejtli, J. (1994). Cyclodextrin inclusion complexes. In J. J. Torres Labandeira & J. L. Vila-Jato (Eds.), Cyclodextrins in Pharmacy (pp. 45–82). Springer Netherlands.
  • García-Márquez, E., Román-Guerrero, A., Cruz-Sosa, F., Lobato-Calleros, C., Álvarez-Ramírez, J., Vernon-Carter, E. J., & Espinosa-Andrews, H. (2015). Effect of layer (calcium phosphate–chitosan)-by-layer (mesquite gum) matrix on carotenoids-in-water-emulsion properties. Food Hydrocolloids, 43, 451–458. https://doi.org/10.1016/j.foodhyd.2014.07.005
  • Gasa-Falcon, A., Arranz, E., Odriozola-Serrano, I., Martín-Belloso, O., & Giblin, L. (2021). Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers. LWT, 135, 110059. https://doi.org/10.1016/j.lwt.2020.110059
  • Gharib, A., Faezizadeh, Z., & Godarzee, M. (2015). Preparation and characterization of nanoliposomal beta-cryptoxanthin and its effect on proliferation and apoptosis in human leukemia cell line K562. Tropical Journal of Pharmaceutical Research, 14(2), 187–194. https://doi.org/10.4314/tjpr.v14i2.1
  • Gharibzahedi, S. M. T., Razavi, S. H., & Mousavi, M. (2015). Optimal development of a new stable nutraceutical nanoemulsion based on the inclusion complex of 2-hydroxypropyl-β-cyclodextrin with canthaxanthin accumulated by Dietzia natronolimnaea HS-1 using ultrasound-assisted emulsification. Journal of Dispersion Science and Technology, 36(5), 614–625. https://doi.org/10.1080/01932691.2014.921188
  • Gharibzahedi, S. M. T., Razavi, S. H., & Mousavi, S. M. (2012). Developing an emulsion model system containing canthaxanthin biosynthesized by Dietzia natronolimnaea HS-1. International Journal of Biological Macromolecules, 51(4), 618–626. https://doi.org/10.1016/j.ijbiomac.2012.06.030
  • Gharibzahedi, S. M. T., Razavi, S. H., & Mousavi, S. M. (2013). Comparison of antioxidant and free radical scavenging activities of biocolorant synthesized by Dietzia natronolimnaea HS-1 cells grown in batch, fed-batch and continuous cultures. Industrial Crops and Products, 49, 10–16. https://doi.org/10.1016/j.indcrop.2013.03.019
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004
  • Gheonea, I., Aprodu, I., Cîrciumaru, A., Râpeanu, G., Bahrim, G. E., & Stănciuc, N. (2021). Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. Journal of Food Engineering, 288, 110166. https://doi.org/10.1016/j.jfoodeng.2020.110166
  • Gomes, F. S., Cabral, L. M. C., Couri, S., Campos, M. B. D., & Costa, P. A. (2014). Lycopene content and antioxidant capacity of watermelon powder. Acta horticulturae, (1040), 105–110. https://doi.org/10.17660/ActaHortic.2014.1040.13
  • Gomes, M. T., Santos, D. T., & Meireles, M. A. A. (2015). Micronization and encapsulation: application of supercritical fluids in water removal. Conventional and Advanced Food Processing Technologies 61, 249–266.
  • Gomez-Estaca, J., Comunian, T. A., Montero, P., Ferro-Furtado, R., & Favaro-Trindade, C. S. (2016). Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloids, 61, 155–162. https://doi.org/10.1016/j.foodhyd.2016.05.005
  • Goula, A. M., & Adamopoulos, K. G. (2012). A new technique for spray-dried encapsulation of lycopene. Drying Technology, 30(6), 641–652. https://doi.org/10.1080/07373937.2012.655871
  • Guadarrama Lezama, A. Y., Jaramillo-Flores, E., Gutiérrez-López, G. F., Pérez-Alonso, C., Dorantes-Alvarez, L., & Alamilla-Beltrán, L. (2014). Effects of storage temperature and water activity on the degradation of carotenoids contained in microencapsulated chili extract. Drying Technology, 32(12), 1435–1447. https://doi.org/10.1080/07373937.2014.900502
  • Guo, J., Jiang, J., Gu, X., Li, X., & Liu, T. (2021). Encapsulation of β-carotene in calcium alginate hydrogels templated by oil-in-water-in-oil (O/W/O) double emulsions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 608, 125548. https://doi.org/10.1016/j.colsurfa.2020.125548
  • Gu, L., Su, Y., Zhang, M., Chang, C., Li, J., McClements, D. J., & Yang, Y. (2017). Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Research International, 96, 84–93. https://doi.org/10.1016/j.foodres.2017.03.015
  • Haas, K., Obernberger, J., Zehetner, E., Kiesslich, A., Volkert, M., & Jaeger, H. (2019). Impact of powder particle structure on the oxidation stability and color of encapsulated crystalline and emulsified carotenoids in carrot concentrate powders. Journal of Food Engineering, 263, 398–408. https://doi.org/10.1016/j.jfoodeng.2019.07.025
  • Hamdi, M., Feki, A., Bardaa, S., Li, S., Nagarajan, S., Mellouli, M., Boudawara, T., Sahnoun, Z., Nasri, M., & Nasri, R. (2020). A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Materials Science & Engineering C, 113, 110978. https://doi.org/10.1016/j.msec.2020.110978
  • Handjani‐vila, R. M., Ribier, A., Rondot, B., & Vanlerberghie, G. (1979). Dispersions of lamellar phases of non‐ionic lipids in cosmetic products. International Journal of Cosmetic Science, 1(5), 303–314. https://doi.org/10.1111/j.1467-2494.1979.tb00224.x
  • Heyang, J. I. N., Fei, X. I. A., Jiang, C., Yaping, Z. H. A. O., & Lin, H. E. (2009). Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chinese Journal of Chemical Engineering, 17(4), 672–677. https://doi.org/10.1016/S1004-9541(08)60262-1
  • Higuera-Ciapara, I., Felix-Valenzuela, L., Goycoolea, F. M., & Argüelles-Monal, W. (2004). Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polymers, 56(1), 41–45. https://doi.org/10.1016/j.carbpol.2003.11.012
  • Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
  • Hojjati, M., Razavi, S. H., Rezaei, K., & Gilani, K. (2011). Spray drying microencapsulation of natural canthaxanthin using soluble soybean polysaccharide as a carrier. Food Science & Biotechnology, 20(1), 63–69. https://doi.org/10.1007/s10068-011-0009-6
  • Hojjati, M., Razavi, S. H., Rezaei, K., & Gilani, K. (2014). Stabilization of canthaxanthin produced by Dietzia natronolimnaea HS-1 with spray drying microencapsulation. Journal of Food Science and Technology, 51(9), 2134–2140. https://doi.org/10.1007/s13197-012-0713-0
  • Horuz, T. İ., & Belibağlı, K. B. (2018). Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry, 268, 86–93. https://doi.org/10.1016/j.foodchem.2018.06.017
  • Horuz, T. İ., & Belibağlı, K. B. (2019). Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by electrospinning. Journal of the Science of Food and Agriculture, 99(2), 759–766. https://doi.org/10.1002/jsfa.9244
  • Hsu, H. J., Huang, R. F., Kao, T. H., Inbaraj, B. S., & Chen, B. H. (2017). Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells. Nanotechnology, 28(13), 135103. https://doi.org/10.1088/1361-6528/aa5e86
  • Huang, L., Li, D., Ma, Y., Liu, Y., Liu, G., Wang, Y., & Tan, B. (2022). Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin. Food Hydrocolloids, 123, 107152. https://doi.org/10.1016/j.foodhyd.2021.107152
  • Huang, R. F. S., Wei, Y. J., Inbaraj, B. S., & Chen, B. H. (2015). Inhibition of colon cancer cell growth by nano emulsion carrying gold nanoparticles and lycopene. International Journal of Nanomedicine, 10, 2823. https://doi.org/10.2147/IJN.S79107
  • Hudiyanti, D., Putri, V. N. R., Hikmahwati, Y., Christa, S. M., Siahaan, P., Anugrah, D. S. B., & Tang, S. Y. (2023). Interaction of phospholipid, cholesterol, Beta-Carotene, and Vitamin C molecules in liposome-based drug delivery systems: An in silico study. Advances in Pharmacological and Pharmaceutical Sciences. Article, 2023, 4301310. https://doi.org/10.1155/2023/4301310
  • Hu, D., Lin, C., Liu, L., Li, S., & Zhao, Y. (2012). Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. Journal of Food Engineering, 109(3), 545–552. https://doi.org/10.1016/j.jfoodeng.2011.10.025
  • Igreja, W. S., Maia, F. D. A., Lopes, A. S., & Chisté, R. C. (2021). Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review. International Journal of Molecular Sciences, 22(16), 8819. https://doi.org/10.3390/ijms22168819
  • Jain, A., Sharma, G., Thakur, K., Raza, K., Shivhare, U. S., Ghoshal, G., & Katare, O. P. (2019). Beta-carotene-encapsulated solid lipid nanoparticles (BC-SLNs) as promising vehicle for cancer: An investigative assessment. AAPS PharmScitech, 20(3), 1–7. https://doi.org/10.1208/s12249-019-1301-7
  • Jhan, S., & Pethe, A. M. (2020). Double-loaded liposomes encapsulating lycopene β-cyclodextrin complexes: Preparation, optimization, and evaluation. Journal of Liposome Research, 30(1), 80–92. https://doi.org/10.1080/08982104.2019.1593450
  • Junghans, A., Sies, H., & Stahl, W. (2001). Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Archives of Biochemistry and Biophysics, 391(2), 160–164. https://doi.org/10.1006/abbi.2001.2411
  • Kalani, M., & Yunus, R. (2011). Application of supercritical antisolvent method in drug encapsulation: A review. International Journal of Nanomedicine, 6(142), 9–42. https://doi.org/10.2147/IJN.S19021
  • Kan, X., Zhou, W., Xu, W., Dai, Z., Yan, Y., Mi, J., Sun, Y., Zeng, X., Cao, Y., & Lu, L. (2022). ZeaxanthinDipalmitate-Enriched emulsion stabilized with whey protein isolate-gum arabic Maillard conjugate improves gut microbiota and inflammation of colitis mice. Foods, 11(22), 3670. https://doi.org/10.3390/foods11223670
  • Kim, J., & Choi, S. J. (2020). Improving the stability of lycopene from chemical degradation in model beverage emulsions: Impact of hydrophilic group size of emulsifier and antioxidant polarity. Foods, 9(8), 971. https://doi.org/10.3390/foods9080971
  • Kim, D., Jung, Y., Rho, S. J., & Kim, Y. R. (2023). Improved stability and in vitro bioavailability of β-carotene in filled hydrogel prepared from starch blends with different granule sizes. Food Hydrocolloids, 108546, 108546. https://doi.org/10.1016/j.foodhyd.2023.108546
  • Kittikaiwan, P., Powthongsook, S., Pavasant, P., & Shotipruk, A. (2007). Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohydrate Polymers, 70(4), 378–385. https://doi.org/10.1016/j.carbpol.2007.04.021
  • Komaiko, J. S., & McClements, D. J. (2016). Formation of Food‐Grade nanoemulsions using low‐energy preparation methods: A review of available methods. Comprehensive Reviews in Food Science and Food Safety, 15(2), 331–352. https://doi.org/10.1111/1541-4337.12189
  • Koo, S. Y., Hwang, K. T., Hwang, S., Choi, K. Y., Park, Y. J., Choi, J. H., Truong, T. Q., & Kim, S. M. (2023). Nanoencapsulation enhances the bioavailability of fucoxanthin in microalga Phaeodactylum tricornutum extract. Food Chemistry, 403, 134348. https://doi.org/10.1016/j.foodchem.2022.134348
  • Kuang, P., Zhang, H., Bajaj, P. R., Yuan, Q., Tang, J., Chen, S., & Sablani, S. S. (2015). Physicochemical properties and storage stability of lutein microcapsules prepared with maltodextrins and sucrose by spray drying. Journal of Food Science, 80(2), E359–369. https://doi.org/10.1111/1750-3841.12776
  • Kumar, R., Mahalingam, H., & Tiwari, K. K. (2014). Selection of solvent in supercritical antisolvent process. APCBEE procedia, 9, 181–186. https://doi.org/10.1016/j.apcbee.2014.01.032
  • Lee, H. S., Sung, D. K., Kim, S. H., Choi, W. I., Hwang, E. T., Choi, D. J., & Chang, J. H. (2017). Controlled release of astaxanthin from nanoporous silicified-phospholipids assembled boron nitride complex for cosmetic applications. Applied Surface Science, 424, 15–19. https://doi.org/10.1016/j.apsusc.2017.03.036
  • Liang, R., Huang, Q., Ma, J., Shoemaker, C. F., & Zhong, F. (2013). Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 33(2), 225–233. https://doi.org/10.1016/j.foodhyd.2013.03.015
  • Lian, T., & Ho, R. J. (2001). Trends and developments in liposome drug delivery systems. Journal of Pharmaceutical Sciences, 90(6), 667–680. https://doi.org/10.1002/jps.1023
  • Lim, A. S. L. (2017). Design of high solids emulsions for dehydration and carotenoids stabilisation (Doctoral dissertation, University College Cork).
  • Lim, A. S., Burdikova, Z., Sheehan, J. J., & Roos, Y. H. (2016). Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose–WPI composites as wall materials. Innovative Food Science & Emerging Technologies, 34, 310–319. https://doi.org/10.1016/j.ifset.2016.03.001
  • Lim, A. S., Griffin, C., & Roos, Y. H. (2014). Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Research International, 62, 403–409. https://doi.org/10.1016/j.foodres.2014.03.059
  • Lim, A. S., & Roos, Y. H. (2017). Carotenoids stability in spray dried high solids emulsions using layer-by-layer (LBL) interfacial structure and trehalose-high DE maltodextrin as glass former. Journal of Functional Foods, 33, 32–39. https://doi.org/10.1016/j.jff.2017.03.006
  • Li, Q., Shi, J., Du, X., McClements, D. J., Chen, X., Duan, M., Liu, L., Li, J., Shao, Y., & Cheng, Y. (2021). Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of β-carotene in oil-in-water nanoemulsions. Food Chemistry, 357, 129714. https://doi.org/10.1016/j.foodchem.2021.129714
  • Liu, C., Guo, Y., Cheng, Y., & Qian, H. (2023). A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota. Food Hydrocolloids, 135, 108189. https://doi.org/10.1016/j.foodhyd.2022.108189
  • Liu, G., Hu, M., Zhao, Z., Lin, Q., Wei, D., & Jiang, Y. (2019). Enhancing the stability of astaxanthin by encapsulation in poly (l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology, 44, 54–62. https://doi.org/10.1016/j.partic.2018.04.006
  • Liu, W., Wang, J., McClements, D. J., & Zou, L. (2018). Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, 40, 527–535. https://doi.org/10.1016/j.jff.2017.11.046
  • Liu, X., Wang, P., Zou, Y. X., Luo, Z. G., & Tamer, T. M. (2020). Co-encapsulation of Vitamin C and β-Carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Research International, 136, 109587. https://doi.org/10.1016/j.foodres.2020.109587
  • Liu, Y., Zhang, C., Cui, B., Zhou, Q., Wang, Y., Chen, X., Fu, H., & Wang, Y. (2022). Effect of emulsifier composition on oil-in-water nano-emulsions: Fabrication, structural characterization and delivery of zeaxanthin dipalmitate from Lycium barbarum L. LWT, 161, 113353. https://doi.org/10.1016/j.lwt.2022.113353
  • Luo, X., Zhou, Y., Bai, L., Liu, F., Deng, Y., & McClements, D. J. (2017). Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Journal of Colloid and Interface Science, 490, 328–335. https://doi.org/10.1016/j.jcis.2016.11.057
  • Lyng, S. M. O., Passos, M., & Fontana, J. D. (2005). Bixin and α-cyclodextrin inclusion complex and stability tests. Process Biochemistry, 40(2), 865–872. https://doi.org/10.1016/j.procbio.2004.02.017
  • Mahalakshmi, L., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2020). Micro-and nano-encapsulation of β-carotene in zein protein: Size-dependent release and absorption behavior. Food & Function, 11(2), 1647–1660. https://doi.org/10.1039/C9FO02088H
  • Maher, P. G., Roos, Y. H., & Fenelon, M. A. (2014). Physicochemical properties of spray dried nanoemulsions with varying final water and sugar contents. Journal of Food Engineering, 126, 113e119. https://doi.org/10.1016/j.jfoodeng.2013.11.001
  • Manconi, M., Sinico, C., Valenti, D., Loy, G., & Fadda, A. M. (2002). Niosomes as carriers for tretinoin. I. Preparation and properties. International Journal of Pharmaceutics, 234(1), 237–248. https://doi.org/10.1016/S0378-5173(01)00971-1
  • Marianecci, C., DiMarzio, L., Rinaldi, F., Celia, C., Paolino, D., Alhaique, F., Esposito, S., & Carafa, M. (2014). Niosomes from 80s to present: The state of the art. Advances in Colloid and Interface Science, 205, 187–206. https://doi.org/10.1016/j.cis.2013.11.018
  • Mashal, M., Attia, N., Puras, G., Martínez-Navarrete, G., Fernández, E., & Pedraz, J. L. (2017). Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60. Journal of Controlled Release, 254, 55–64. https://doi.org/10.1016/j.jconrel.2017.03.386
  • Mattea, F., Martín, Á., Matías-Gago, A., & Cocero, M. J. (2009). Supercritical antisolvent precipitation from an emulsion: β-carotene nanoparticle formation. The Journal of Supercritical Fluids, 51(2), 238–247. https://doi.org/10.1016/j.supflu.2009.08.013
  • McClements, D. J. (2002). Colloidal basis of emulsion color. Current Opinion in Colloid & Interface Science, 7(5–6), 451–455. https://doi.org/10.1016/S1359-0294(02)00075-4
  • McClements, D. J. (2015). Food emulsions: Principles, practices, and techniques (3rd ed.). CRC Press INC.
  • Medeiros, A. K. D. O. C., de Carvalho Gomes, C., de Araújo Amaral, M. L. Q., de Medeiros, L. D. G., Medeiros, I., Porto, D. L., Aragão, C. F. S., Maciel, B. L. L., de Araújo Morais, A. H., & Passos, T. S. (2019). Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chemistry, 270, 562–572. https://doi.org/10.1016/j.foodchem.2018.07.099
  • Medeiros, I., de Oliveira, G. L. R., de Queiroz, J. L. C., de Carvalho Gomes, C., de Carvalho, F. M. C., de Souza Lima, M. C. J., Serquiz, A. C., de Andrade Santos, P. P., da Silva Camillo, C., Maciel, B. L. L., de Araújo Morais, A. H., & Passos, T. S. (2020). Safety and bioactive potential of nanoparticles containing Cantaloupe melon (Cucumis melo L.) carotenoids in an experimental model of chronic inflammation. Biotechnology Reports, 28, e00567. https://doi.org/10.1016/j.btre.2020.e00567
  • Mele, A., Mendichi, R., Selva, A., Molnar, P., & Toth, G. (2002). Non-covalent associations of cyclomaltooligosaccharides (cyclodextrins) with carotenoids in water. A study on the α-and β-cyclodextrin/ψ, ψ-carotene (lycopene) systems by light scattering, ionspray ionization and tandem mass spectrometry. Carbohydrate Research, 337(12), 1129–1136. https://doi.org/10.1016/S0008-6215(02)00097-6
  • Mezzomo, N., de Paz, E., Maraschin, M., Martín, Á., Cocero, M. J., & Ferreira, S. R. (2012). Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: Effect of operational conditions on encapsulation efficiency. The Journal of Supercritical Fluids, 66, 342–349. https://doi.org/10.1016/j.supflu.2011.08.006
  • Michelon, M., & de Medeiros Burkert, J. F. (2022). Production and stability of food-grade liposomes containing microbial carotenoids from Rhodotorula mucilaginosa. Food Structure, 33, 100282. https://doi.org/10.1016/j.foostr.2022.100282
  • Michelon, M., Mantovani, R. A., Sinigaglia-Coimbra, R., de la Torre, L. G., & Cunha, R. L. (2016). Structural characterization of β-carotene-incorporated nanovesicles produced with non-purified phospholipids. Food Research International, 79, 95–105. https://doi.org/10.1016/j.foodres.2015.11.020
  • Miguel, F., Martín, A., Mattea, F., & Cocero, M. J. (2008). Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 47(9), 1594–1602. https://doi.org/10.1016/j.cep.2007.07.008
  • Mitra, R., Samanta, A. K., Chaudhuri, S., & Dutta, D. (2017). Effect of selected physico‐chemical factors on bacterial Β‐Cryptoxanthin degradation: stability and kinetic study. Journal of Food Process Engineering, 40(2), e12379. https://doi.org/10.1111/jfpe.12379
  • Montero, P., Calvo, M. M., Gómez-Guillén, M. C., & Gómez-Estaca, J. (2016). Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. Lwt-Food Science and Technology, 70, 229–236. https://doi.org/10.1016/j.lwt.2016.02.040
  • Moraes, M., Carvalho, J. M. P., Silva, C. R., Cho, S., Sola, M. R., & Pinho, S. C. (2013). Liposomes encapsulating beta‐carotene produced by the proliposomes method: Characterisation and shelf life of powders and phospholipid vesicles. International Journal of Food Science & Technology, 48(2), 274–282. https://doi.org/10.1111/j.1365-2621.2012.03184.x
  • Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry, 173, 454–461. https://doi.org/10.1016/j.foodchem.2014.10.053
  • Mun, S., Kim, Y. R., Shin, M., & McClements, D. J. (2015). Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocolloids, 44, 380–389. https://doi.org/10.1016/j.foodhyd.2014.10.013
  • Mun, S., & McClements, D. J. (2017). Influence of simulated in-mouth processing (size reduction and alpha-amylase addition) on lipid digestion and β-carotene bioaccessibility in starch-based filled hydrogels. Lwt-Food Science and Technology, 80, 113–120. https://doi.org/10.1016/j.lwt.2017.02.011
  • Nalawade, P., & Gajjar, A. (2015). Assessment of in-vitro bio accessibility and characterization of spray dried complex of astaxanthin with methylated betacyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 83(1–2), 63–75. https://doi.org/10.1007/s10847-015-0541-8
  • Niu, H., Chen, W., Chen, W., Yun, Y., Zhong, Q., Fu, X. Chen, H., & Liu, G. (2019). Preparation and characterization of a modified-β-cyclodextrin/β-carotene inclusion complex and its application in pickering emulsions. Journal of Agricultural & Food Chemistry, 67(46), 12875–12884. https://doi.org/10.1021/acs.jafc.9b05467
  • Oliveira, D. A., Mezzomo, N., Gomes, C., & Ferreira, S. R. S. (2017). Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. The Journal of Supercritical Fluids, 129, 96–105. https://doi.org/10.1016/j.supflu.2017.02.011
  • Otálora, M. C., Wilches-Torres, A., & Gómez Castaño, J. A. (2022). Spray-Drying microencapsulation of pink guava (Psidium guajava) carotenoids using mucilage from opuntia ficus-indica cladodes and aloe vera leaves as encapsulating materials. Polymers, 14(2), 310. https://doi.org/10.3390/polym14020310
  • Palozza, P., Muzzalupo, R., Trombino, S., Valdannini, A., & Picci, N. (2006). Solubilization and stabilization of β-carotene in niosomes: Delivery to cultured cells. Chemistry and Physics of Lipids, 139(1), 32–42. https://doi.org/10.1016/j.chemphyslip.2005.09.004
  • Park, J., & Choi, S. J. (2022). Influence of interfacial characteristics and antioxidant polarity on the chemical stability of β-carotene in emulsions prepared using non-ionic surfactant blends. Food Chemistry, 369, 130945. https://doi.org/10.1016/j.foodchem.2021.130945
  • Peinado, I., Mason, M., Romano, A., Biasioli, F., & Scampicchio, M. (2016). Stability of β-carotene in polyethylene oxide electrospun nanofibers. Applied Surface Science, 370, 111–116. https://doi.org/10.1016/j.apsusc.2016.02.150
  • Pelissari, J. R., Souza, V. B., Pigoso, A. A., Tulini, F. L., Thomazini, M., Rodrigues, C. E., Urbano, A., & Favaro-Trindade, C. S. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food and Bioproducts Processing, 98, 86–94. https://doi.org/10.1016/j.fbp.2015.12.006
  • Pérez-Masiá, R., Lagaron, J. M., & Lopez-Rubio, A. (2015). Morphology and stability of edible lycopene-containing micro-and nanocapsules produced through electrospraying and spray drying. Food and Bioprocess Technology, 8(2), 459–470. https://doi.org/10.1007/s11947-014-1422-7
  • Petito, N. D. L., Devens, J. M., Falcão, D. Q., Dantas, F. M. L., Passos, T. S., & Araujo, K. G. D. L. (2022). Nanoencapsulation of red bell pepper carotenoids: comparison of encapsulating agents in an emulsion based system. Colorants, 1(2), 132–148. https://doi.org/10.3390/colorants1020009
  • Pfitzner, I., Francz, P. I., & Biesalski, H. K. (2000). Carotenoid: Methyl-β-cyclodextrin formulations: An improved method for supplementation of cultured cells. Biochimica Et Biophysica Acta (BBA)-General Subjects, 1474(2), 163–168. https://doi.org/10.1016/S0304-4165(00)00014-3
  • Prieto, C., & Calvo, L. (2017a). The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids, 128, 227–234. https://doi.org/10.1016/j.supflu.2017.06.003
  • Prieto, C., & Calvo, L. (2017b). Supercritical fluid extraction of emulsions to nanoencapsulate vitamin E in polycaprolactone. The Journal of Supercritical Fluids, 119, 274–282. https://doi.org/10.1016/j.supflu.2016.10.004
  • Prosapio, V., Reverchon, E., & De Marco, I. (2015). Coprecipitation of polyvinylpyrrolidone/β-carotene by supercritical antisolvent processing. Industrial & Engineering Chemistry Research, 54(46), 11568–11575. https://doi.org/10.1021/acs.iecr.5b03504
  • Pu, J., Bankston, J. D., & Sathivel, S. (2011). Production of microencapsulated crawfish (Procambarus clarkii) astaxanthin in oil by spray drying technology. Drying Technology, 29(10), 1150–1160. https://doi.org/10.1080/07373937.2011.573155
  • Rahaiee, S., Hashemi, M., Shojaosadati, S. A., Moini, S., & Razavi, S. H. (2017). Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. International Journal of Biological Macromolecules, 99, 401–408. https://doi.org/10.1016/j.ijbiomac.2017.02.095
  • Rahaiee, S., Shojaosadati, S. A., Hashemi, M., Moini, S., & Razavi, S. H. (2015). Improvement of crocin stability by biodegradable nanoparticles of chitosan-alginate. International Journal of Biological Macromolecules, 79, 423–432. https://doi.org/10.1016/j.ijbiomac.2015.04.041
  • Ranveer, R. C., Gatade, A. A., Kamble, H. A., & Sahoo, A. K. (2015). Microencapsulation and storage stability of lycopene extracted from tomato processing waste. Brazilian Archives of Biology and Technology, 58(6), 953–960. https://doi.org/10.1590/S1516-89132015060366
  • Ravaghi, M., Razavi, S. H., Mousavi, S. M., Sinico, C., & Fadda, A. M. (2016). Stabilization of natural canthaxanthin produced by Dietzia natronolimnaea HS-1 by encapsulation in niosomes. Lwt-Food Science and Technology, 73, 498–504. https://doi.org/10.1016/j.lwt.2016.06.027
  • Ravaghi, M., Sinico, C., Razavi, S. H., Mousavi, S. M., Pini, E., & Fadda, A. M. (2017). Proniosomal powders of natural canthaxanthin: Preparation and characterization. Food Chemistry, 220, 233–241. https://doi.org/10.1016/j.foodchem.2016.09.162
  • Ravi, H., Arunkumar, R., & Baskaran, V. (2015). Chitosan-glycolipid nanogels loaded with anti-obese marine carotenoid fucoxanthin: Acute and sub-acute toxicity evaluation in rodent model. Journal of Biomaterials Applications, 30(4), 420–434. https://doi.org/10.1177/0885328215590753
  • Ravi, H., & Baskaran, V. (2015). Biodegradable chitosan-glycolipid hybrid nanogels: A novel approach to encapsulate fucoxanthin for improved stability and bioavailability. Food Hydrocolloids, 43, 717–725. https://doi.org/10.1016/j.foodhyd.2014.08.004
  • Ravi, H., & Baskaran, V. (2017). Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. Journal of Functional Foods, 28, 215–226. https://doi.org/10.1016/j.jff.2016.10.023
  • Ravi, H., Kurrey, N., Manabe, Y., Sugawara, T., & Baskaran, V. (2018). Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Materials Science & Engineering C, 91, 785–795. https://doi.org/10.1016/j.msec.2018.06.018
  • Reksamunandar, R. P., Edikresnha, D., Munir, M. M., Damayanti, S. (2017). Encapsulation of β-carotene in poly (vinylpyrrolidone)(PVP) by electrospinning technique. Procedia Engineering, 170, 19–23. https://doi.org/10.1016/j.proeng.2017.03.004
  • Rengel, D., Dıez-Navajas, A., Serna-Rico, A., Veiga, P., Muga, A., & Milicua, J. C. G. (2000). Exogenously incorporated ketocarotenoids in large unilamellar vesicles. Protective activity against peroxidation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1463(1), 179–187. https://doi.org/10.1016/S0005-2736(99)00194-7
  • Rostamabadi, H., Mahoonak, A. S., Allafchian, A., & Ghorbani, M. (2019). Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing. International Journal of Biological Macromolecules, 139, 773–784. https://doi.org/10.1016/j.ijbiomac.2019.07.182
  • Rubio, F. T. V., Haminiuk, C. W. I., de Freitas Santos, P. D., Martelli-Tosi, M., Thomazini, M., de Carvalho Balieiro, J. C., Makimori, G. Y. F., & Fávaro-Trindade, C. S. (2022). Investigation on brewer’s spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food & Function, 13(19), 10096–10109. https://doi.org/10.1039/D2FO00759B
  • Salama, M. F., Seliem, E. I., Mahmoud, K. F., & Amin, A. A. (2015). Physiochemical characterization and oxidative stability of encapsulated nano lycopene pigments extracted by CO2 fluid extraction. International Journal of Current Microbiology & Applied Sciences, 4(3), 307–320.
  • Sangsuriyawong, A., Limpawattana, M., Siriwan, D., & Klaypradit, W. (2019). Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes. Food Science & Biotechnology, 28(2), 529–537. https://doi.org/10.1007/s10068-018-0495-x
  • Santos, D. T., Martín, Á., Meireles, M. A. A., & Cocero, M. J. (2012). Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids, 61, 167–174. https://doi.org/10.1016/j.supflu.2011.09.011
  • Santoyo‐aleman, D., Sanchez, L. T., & Villa, C. C. (2019). Citric‐acid modified banana starch nanoparticles as a novel vehicle for β‐carotene delivery. Journal of the Science of Food and Agriculture, 99(14), 6392–6399. https://doi.org/10.1002/jsfa.9918
  • Saravana, P. S., Shanmugapriya, K., Gereniu, C. R. N., Chae, S. J., Kang, H. W., Woo, H. C., & Chun, B. S. (2019). Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrasonics Sonochemistry, 55, 105–116. https://doi.org/10.1016/j.ultsonch.2019.03.014
  • Šeregelj, V., Ćetković, G., Čanadanović-Brunet, J., Šaponjac, V. T., Vulić, J., Lević, S., Nedović, V., Brandolini, A., & Hidalgo, A. (2021). Encapsulation of carrot waste extract by freeze and spray drying techniques: An optimization study. LWT, 138, 110696. https://doi.org/10.1016/j.lwt.2020.110696
  • Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition, 33(6), 501–547. https://doi.org/10.1080/10408399309527645
  • Sharma, P. K. S. P., Saxena, P., Jaswanth, A., Chalamaiah, M., Tekade, K. R., & Balasubramaniam, A. (2016). Novel encapsulation of lycopene in niosomes and assessment of its anticancer activity. Journal of Bioequivalence & Bioavailability, 8(5), 224–232. https://doi.org/10.4172/jbb.1000300
  • Shen, Q., & Quek, S. Y. (2014). Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. Journal of Food Engineering, 123, 165–171. https://doi.org/10.1016/j.jfoodeng.2013.09.002
  • Shi, Z., Shi, Z., Wu, M., Shen, Y., Li, G., & Ma, T. (2020). Fabrication of emulsion gel based on polymer sanxan and its potential as a sustained-release delivery system for β-carotene. International Journal of Biological Macromolecules, 164, 597–605. https://doi.org/10.1016/j.ijbiomac.2020.07.177
  • Silva, K. C. G., Feltre, G., Hubinger, M. D., & Sato, A. C. K. (2021). Protection and targeted delivery of β-carotene by starch-alginate-gelatin emulsion-filled hydrogels. Journal of Food Engineering, 290, 110205.
  • Song, H. Y., Moon, T. W., & Choi, S. J. (2018). Storage stability of β‐Carotene in model beverage emulsions: implication of interfacial thickness. European Journal of Lipid Science & Technology, 120(9), 1800127. https://doi.org/10.1002/ejlt.201800127
  • Song, H. Y., Moon, T. W., & Choi, S. J. (2019). Impact of antioxidant on the stability of β-carotene in model beverage emulsions: Role of emulsion interfacial membrane. Food Chemistry, 279, 194–201. https://doi.org/10.1016/j.foodchem.2018.11.126
  • Souza, A. L., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT, 91, 286–292. https://doi.org/10.1016/j.lwt.2018.01.053
  • Spada, J. C., Marczak, L. D. F., Tessaro, I. C., & Noreña, C. P. Z. (2012). Microencapsulation of β‐carotene using native pinhão starch, modified pinhão starch and gelatin by freeze‐drying. International Journal of Food Science & Technology, 47(1), 186–194. https://doi.org/10.1111/j.1365-2621.2011.02825.x
  • Spada, J. C., Noreña, C. P. Z., Marczak, L. D. F., & Tessaro, I. C. (2012). Study on the stability of β-carotene microencapsulated with pinhão (Araucaria angustifolia seeds) starch. Carbohydrate Polymers, 89(4), 1166–1173. https://doi.org/10.1016/j.carbpol.2012.03.090
  • Srihera, N., Li, Y., Zhang, T. T., Wang, Y. M., Yanagita, T., Waiprib, Y., & Xue, C. H. (2022). Preparation and characterization of astaxanthin-loaded liposomes stabilized by sea cucumber sulfated sterols instead of cholesterol. Journal of Oleo Science, 71(3), ess21233. https://doi.org/10.5650/jos.ess21233
  • Sun, X., Xu, Y., Zhao, L., Yan, H., Wang, S., & Wang, D. (2018). The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Advances, 8(61), 35139–35149. https://doi.org/10.1039/C8RA05621H
  • Szejtli, J. (1988). Cyclodextrin inclusion complexes. In J. Eric D. Davies (Ed.), Cyclodextrin technology (pp. 79–185). Springer Netherlands.
  • Tachaprutinun, A., Udomsup, T., Luadthong, C., & Wanichwecharungruang, S. (2009). Preventing the thermal degradation of astaxanthin through nanoencapsulation. International Journal of Pharmaceutics, 374(1), 119–124. https://doi.org/10.1016/j.ijpharm.2009.03.001
  • Takemoto, Y., Hirose, Y., Sugahara, K., Hashimoto, M., Hara, H., & Yamashita, H. (2017). Protective effect of an astaxanthin nanoemulsion against neomycin-induced hair-cell damage in zebrafish. Auris, Nasus, Larynx, 45(1), 20–25. https://doi.org/10.1016/j.anl.2017.02.001
  • Tanaka, Y., Uemori, C., Kon, T., Honda, M., Machmudah, W., Machmudah, S., Kanda, H., & Goto, M. (2020). Preparation of liposomes encapsulating β–carotene using supercritical carbon dioxide with ultrasonication. The Journal of Supercritical Fluids, 161, 104848. https://doi.org/10.1016/j.supflu.2020.104848
  • Tan, C., Feng, B., Zhang, X., Xia, W., & Xia, S. (2016). Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloids, 52, 774–784. https://doi.org/10.1016/j.foodhyd.2015.08.016
  • Tan, C., Xia, S., Xue, J., Xie, J., Feng, B., & Zhang, X. (2013). Liposomes as vehicles for lutein: Preparation, stability, liposomal membrane dynamics, and structure. Journal of Agricultural & Food Chemistry, 61(34), 8175–8184. https://doi.org/10.1021/jf402085f
  • Tan, C., Xue, J., Abbas, S., Feng, B., Zhang, X., & Xia, S. (2014). Liposome as a delivery system for carotenoids: Comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. Journal of Agricultural & Food Chemistry, 62(28), 6726–6735. https://doi.org/10.1021/jf405622f
  • Tan, C., Xue, J., Lou, X., Abbas, S., Guan, Y., Feng, B., Zhang, X., & Xia, S. (2014). Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food & Function, 5(6), 1232–1240. https://doi.org/10.1039/c3fo60498e
  • Thamaket, P., & Raviyan, P. (2015). Preparation and physical properties of carotenoids encapsulated in chitosan cross-linked tripolyphosphate nanoparticles. Food and Applied Bioscience Journal, 3(1), 69–84.
  • Tippel, J., Reim, V., Rohn, S., & Drusch, S. (2016). Colour stability of lutein esters in liquid and spray dried delivery systems based on Quillaja saponins. Food Research International, 87, 68–75. https://doi.org/10.1016/j.foodres.2016.06.014
  • Toniazzo, T., Berbel, I. F., Cho, S., Fávaro-Trindade, C. S., Moraes, I. C., & Pinho, S. C. (2014). β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. Lwt-Food Science and Technology, 59(2), 1265–1273. https://doi.org/10.1016/j.lwt.2014.05.021
  • Toragall, V., Jayapala, N., & Vallikannan, B. (2020). Chitosan-oleic acid-sodium alginate a hybrid nanocarrier as an efficient delivery system for enhancement of lutein stability and bioavailability. International Journal of Biological Macromolecules, 150, 578–594. https://doi.org/10.1016/j.ijbiomac.2020.02.104
  • Torres-Giner, S., Gimenez, E., & Lagarón, J. M. (2008). Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601–614. https://doi.org/10.1016/j.foodhyd.2007.02.005
  • Uchegbu, I. F., & Florence, A. T. (1995). Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Advances in Colloid and Interface Science, 58(1), 1–55. https://doi.org/10.1016/0001-8686(95)00242-I
  • Uchegbu, I. F., & Vyas, S. P. (1998). Non-ionic surfactant based vesicles (niosomes) in drug delivery. International Journal of Pharmaceutics, 172(1), 33–70. https://doi.org/10.1016/S0378-5173(98)00169-0
  • Vakarelova, M., Zanoni, F., Lardo, P., Rossin, G., Mainente, F., Chignola, R., Menin, A., Rizzi, C., & Zoccatelli, G. (2017). Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology. Food Chemistry, 221, 289–295. https://doi.org/10.1016/j.foodchem.2016.10.085
  • Varma, K., Jude, S., Nair, R. V. R., Varghese, B. A., Jacob, J., Amalraj, A., & Kuttappan, S. (2021). Novel formulation of liposomal lutein using nanofiber weaving (NFW) technology: Antioxidant property and in vitro release studies. Food Hydrocolloids for Health, 1, 100025. https://doi.org/10.1016/j.fhfh.2021.100025
  • Varona, S., Martín, Á., & Cocero, M. J. (2016). Encapsulation of edible active compounds using supercritical fluids. In Jamileh M. Lakkis (Ed.), Encapsulation and Controlled Release Technologies in Food Systems (2nd ed., pp. 16).
  • Vieira, M. V., Derner, R. B., & Lemos-Senna, E. (2021). Preparation and characterization of Haematococcus pluvialis carotenoid-loaded PLGA nanocapsules in a gel system with antioxidant properties for topical application. Journal of Drug Delivery Science and Technology, 61, 102099. https://doi.org/10.1016/j.jddst.2020.102099
  • Vulić, J., Šeregelj, V., Kalušević, A., Lević, S., Nedović, V., Tumbas Šaponjac, V., Čanadanović-Brunet, J., & Ćetković, G. (2019). Bioavailability and bioactivity of encapsulated phenolics and carotenoids isolated from red pepper waste. Molecules, 24(15), 2837. https://doi.org/10.3390/molecules24152837
  • Wang, H., Hu, L., Peng, L., Du, J., Lan, M., Cheng, Y., Ma, L., & Zhang, Y. (2022). Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chemistry, 378, 132088. https://doi.org/10.1016/j.foodchem.2022.132088
  • Wang, R., Wang, Y., Guo, W., & Zeng, M. (2021). Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocolloids, 117, 106663. https://doi.org/10.1016/j.foodhyd.2021.106663
  • Wang, Y., Yang, X., Liu, W., Zhang, F., Cai, Q., & Deng, X. (2013). Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray. Journal of Microencapsulation, 30(5), 490–497. https://doi.org/10.3109/02652048.2012.752537
  • Wang, Q., Zhao, Y., Guan, L., Zhang, Y., Dang, Q., Dong, P., Li, J., & Liang, X. (2017). Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chemistry, 227, 9–15. https://doi.org/10.1016/j.foodchem.2017.01.081
  • Wu, H., Zhang, H., Li, X., Secundo, F., & Mao, X. (2023). Preparation and characterization of phosphatidyl-agar oligosaccharide liposomes for astaxanthin encapsulation. Food Chemistry, 404, 134601. https://doi.org/10.1016/j.foodchem.2022.134601
  • Xia, F., Hu, D., Jin, H., Zhao, Y., & Liang, J. (2012). Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloids, 26(2), 456–463. https://doi.org/10.1016/j.foodhyd.2010.11.014
  • Xu, X., Wang, Y., Constantinou, A. I., Stacewicz-Sapuntzakis, M., Bowen, P. E., & Van Breemen, R. B. (1999). Solubilization and stabilization of carotenoids using micelles: Delivery of lycopene to cells in culture. Lipids, 34(10), 1031–1036. https://doi.org/10.1007/s11745-999-0454-9
  • Yang, L., Cao, X., Gai, A., Qiao, X., Wei, Z., Li, J., Xu, J., & Xue, C. (2022). Chitosan/Guar gum nanoparticles to stabilize Pickering emulsion for astaxanthin encapsulation. LWT, 165, 113727. https://doi.org/10.1016/j.lwt.2022.113727
  • Yi, J., Fan, Y., Zhang, Y., & Zhao, L. (2016). Characterization of catechin-α-lactalbumin conjugates and the improvement in β-carotene retention in an oil-in-water nanoemulsion. Food Chemistry, 205, 73–80. https://doi.org/10.1016/j.foodchem.2016.03.005
  • Yi, J., Huang, H., Wen, Z., & Fan, Y. (2021). Fabrication of chitosan-gallic acid conjugate for improvement of physicochemical stability of β-carotene nanoemulsion: Impact of Mw of chitosan. Food Chemistry, 362, 130218. https://doi.org/10.1016/j.foodchem.2021.130218
  • Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., & Zhong, F. (2015a). Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocolloids, 43, 31–40. https://doi.org/10.1016/j.foodhyd.2014.04.028
  • Yi, J., Li, Y., Zhong, F., & Yokoyama, W. (2014). The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in-water sodium caseinate emulsions. Food Hydrocolloids, 35, 19–27. https://doi.org/10.1016/j.foodhyd.2013.07.025
  • Yi, J., Zhang, Y., Liang, R., Zhong, F., & Ma, J. (2014). Beta-carotene chemical stability in nanoemulsions was improved by stabilized with beta-lactoglobulin–catechin conjugates through free radical method. Journal of Agricultural & Food Chemistry, 63(1), 297–303. https://doi.org/10.1021/jf5056024
  • Yi, J., Zhang, Y., Liang, R., Zhong, F., & Ma, J. (2015b). Beta-carotene chemical stability in nanoemulsions was improved by stabilized with beta-lactoglobulin–catechin conjugates through free radical method. Journal of Agricultural & Food Chemistry, 63(1), 297–303. https://doi.org/10.1021/jf5056024
  • Yoo, J. H., Shanmugam, S., Thapa, P., Lee, E. S., Balakrishnan, P., Baskaran, R., Yoon, S. K., Choi, H. G., Yong, C. S., Yoo, B. K., & Han, K. (2010). Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Archives of Pharmacal Research, 33(3), 417–426. https://doi.org/10.1007/s12272-010-0311-5
  • Young, A. J., Pritchard, J., White, D., & Davies, S. (2017). Processing of astaxanthin‐rich Haematococcus cells for dietary inclusion and optimal pigmentation in Rainbow trout, Oncorhynchus mykiss L. Aquaculture Nutrition, 23(6), 1304–1311. https://doi.org/10.1111/anu.12505
  • Yuan, C., Du, L., Jin, Z., & Xu, X. (2013). Storage stability and antioxidant activity of complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Carbohydrate Polymers, 91(1), 385–389. https://doi.org/10.1016/j.carbpol.2012.08.059
  • Yuan, C., Jin, Z., & Xu, X. (2012). Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1 H NMR and molecular modeling studies. Carbohydrate Polymers, 89(2), 492–496. https://doi.org/10.1016/j.carbpol.2012.03.033
  • Yuan, C., Jin, Z., Xu, X., Zhuang, H., & Shen, W. (2008). Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chemistry, 109(2), 264–268. https://doi.org/10.1016/j.foodchem.2007.07.051
  • Zhang, J., Jia, G., Wanbin, Z., Minghao, J., Wei, Y., Hao, J., Liu, X., Gan, Z., & Sun, A. (2021). Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocolloids, 112, 106280. https://doi.org/10.1016/j.foodhyd.2020.106280
  • Zhang, C., & Li, B. (2022). Fabrication of nanoemulsion delivery system with high bioaccessibility of carotenoids from Lycium barbarum by spontaneous emulsification. Food Science & Nutrition, 10(8), 2582–2589. https://doi.org/10.1002/fsn3.2863
  • Zhang, D., Wang, L., Zhang, X., Bao, D., & Zhao, Y. (2018). Polymeric micelles for Ph-responsive lutein delivery. Journal of Drug Delivery Science and Technology, 45, 281–286. https://doi.org/10.1016/j.jddst.2018.03.023
  • Zhang, L., Wei, Y., Liao, W., Tong, Z., Wang, Y., Liu, J., & Gao, Y. (2021). Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocolloids, 121, 106977. https://doi.org/10.1016/j.foodhyd.2021.106977
  • Zhang, Z., Zhang, R., & McClements, D. J. (2016). Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids, 61, 1–10. https://doi.org/10.1016/j.foodhyd.2016.04.036
  • Zhang, X., Zhao, X., Tie, S., Li, J., Su, W., & Tan, M. (2022). A smart cauliflower-like carrier for astaxanthin delivery to relieve colon inflammation. Journal of Controlled Release, 342, 372–387. https://doi.org/10.1016/j.jconrel.2022.01.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.