81
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: design, optimization and in-vitro evaluations

&
Pages 502-516 | Received 12 Dec 2022, Accepted 22 Jun 2023, Published online: 05 Jul 2023

References

  • Agrawal M., Saraf S., Pradhan M., Patel R.J., Singhvi G. and Alexander A., 2021. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 141,111919. doi:10.1016/j.biopha.2021.111919
  • Ali, R., Farah, A., and Binkhathlan, Z., 2017. Development and characterization of methoxy poly (ethylene oxide)-block-poly (ε-caprolactone)(PEO-b-PCL) micelles as vehicles for the solubilization and delivery of tacrolimus. Saudi pharmaceutical journal : the official publication of the saudi pharmaceutical society, 25 (2), 258–265. doi:10.1016/j.jsps.2016.06.009.
  • Amekyeh, H., and Billa, N., 2021. Lyophilized drug-loaded solid lipid nanoparticles formulated with beeswax and theobroma oil. Molecules, 26 (4), 908. doi:10.3390/molecules26040908.
  • Ataide, J.A., et al., 2021. Freeze-dried chitosan nanoparticles to stabilize and deliver bromelain. Journal of drug delivery science and technology, 61, 102225. doi:10.1016/j.jddst.2020.102225.
  • Bansal, S., et al., 2019. Hyperactive magnetically separable nano-sized mgfe2o4 catalyst for the synthesis of several five-and six-membered heterocycles. Chemistry & chemical technology, 13 (2), 163–169. doi:10.23939/chcht13.02.163.
  • Berdoulay, A., English, R.V., and Nadelstein, B., 2005. Effect of topical 0.02% tacrolimus aqueous suspension on tear production in dogs with keratoconjunctivitis sicca. Veterinary ophthalmology, 8 (4), 225–232. doi:10.1111/j.1463-5224.2005.00390.x.
  • Bonner, J.M., and Boulianne, G.L., 2017. Diverse structures, functions and uses of FK506 binding proteins. Cellular signalling, 38, 97–105. doi:10.1016/j.cellsig.2017.06.013.
  • Brooke, D., and Washkuhn, R.J., 1977. Zero-order drug delivery system: theory and preliminary testing. Journal of pharmaceutical sciences, 66 (2), 159–162. doi:10.1002/jps.2600660206.
  • Chandra, S., et al., 2012. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian pacific journal of tropical biomedicine, 2 (1), S178–S180. doi:10.1016/S2221-1691(12)60154-3.
  • Cretella, A.B.M., et al., 2020. Expanding the anti-inflammatory potential of Moringa oleifera: topical effect of seed oil on skin inflammation and hyperproliferation. Journal of ethnopharmacology, 254, 112708. doi:10.1016/j.jep.2020.112708.
  • Dantas, I.L., et al., 2018. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. Journal of thermal analysis and calorimetry, 132 (3), 1557–1566. doi:10.1007/s10973-018-7072-7.
  • Dasineh, S., et al., 2021. Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: preparation, optimization and physicochemical characterization. Applied nanoscience, 11 (4), 1169–1181. doi:10.1007/s13204-021-01744-4.
  • De Moura, M.R., et al., 2009. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of food engineering, 92 (4), 448–453. doi:10.1016/j.jfoodeng.2008.12.015.
  • Deshmukh, R., Harwansh, R.K., and Rahman, M., 2021. Sodium alginate-guar gum and carbopol based methotrexate loaded mucoadhesive microparticles for colon delivery: an in vitro evaluation. Brazilian journal of pharmaceutical sciences, 57, 1–13. doi:10.1590/s2175-97902020000419147.
  • Dhiman, N., et al., 2021. Lipid nanoparticles as carriers for bioactive delivery. Frontiers in chemistry, 9, 580118. doi:10.3389/fchem.2021.580118.
  • Dodiya, S.S., et al., 2011. Solid lipid nanoparticles and nanosuspension formulation of Saquinavir: preparation, characterization, pharmacokinetics and biodistribution studies. Journal of microencapsulation, 28 (6), 515–527. doi:10.3109/02652048.2011.590612.
  • Doolaanea, A.A., et al., 2016. Co-encapsulation of Nigella sativa oil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. Journal of microencapsulation, 33 (2), 114–126. doi:10.3109/02652048.2015.1134689.
  • Dubes, A., et al., 2003. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 55 (3), 279–282. doi:10.1016/s0939-6411(03)00020-1.
  • Ekberg, H., et al., 2007. Reduced exposure to calcineurin inhibitors in renal transplantation. The new England journal of medicine, 357 (25), 2562–2575. doi:10.1056/NEJMoa067411.
  • El-Far, S.W., et al., 2022. Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies. Pharmaceuticals, 15 (7), 816. doi:10.3390/ph15070816.
  • Friedrich, R.B., et al., 2016. Lipid-core nanocapsules improved antiedematogenic activity of tacrolimus in adjuvant-induced arthritis model. Journal of nanoscience and nanotechnology, 16 (2), 1265–1274. doi:10.1166/jnn.2016.11673.
  • Garg, A., Ahmad, J., and Hassan, M.Z., 2021. Inclusion complex of thymol and hydroxypropyl-β-cyclodextrin (HP-β-CD) in polymeric hydrogel for topical application: physicochemical characterization, molecular docking, and stability evaluation. Journal of drug delivery science and technology, 64, 102609. doi:10.1016/j.jddst.2021.102609.
  • Garg, A, Bhalala, K, Tomar, D S, Wahajuddin, 2017. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles. International journal of pharmaceutics, 516(1–2),120–130. doi:10.1016/j.ijpharm.2016.10.064.
  • Garg, A., and Garg, R., 2022. Current advances in colloidal based delivery systems for Tacrolimus. Journal of drug delivery science and technology, 68, 103108. doi:10.1016/j.jddst.2022.103108.
  • Garg, A., and Singh, S., 2011. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids and surfaces. B, biointerfaces, 87 (2), 280–288. doi:10.1016/j.colsurfb.2011.05.030.
  • Gautam, S., et al., 2020. Phyto-assisted synthesis and characterization of V2O5 nanomaterial and their electrochemical and antimicrobial investigations. Nano LIFE, 10 (03), 2050003. doi:10.1142/S1793984420500038.
  • Gibaldi, M., and Feldman, S., 1967. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms. Journal of pharmaceutical sciences, 56 (10), 1238–1242. doi:10.1002/jps.2600561005.
  • Gill, R., Das, D. K., and Kumar, A., 2022. Phenyl conjugation effect on Fe 3+/2+ formal potential of FeN 4-macryclic complex.Research square, 1–13. doi:10.21203/rs.3.rs-2148188/v1.
  • Hane, K., et al., 1992. Physico-chemical properties of FK-506. Iyakuhin Kenkyu, 23, 33–43.
  • Harikishore, A., and Sup Yoon, H., 2016. Immunophilins: structures, mechanisms and ligands. Current molecular pharmacology, 9 (1), 37–47. doi:10.2174/1874467208666150519113427.
  • Higuchi, T., 1963. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of pharmaceutical sciences, 52 (12), 1145–1149.
  • Hixson, A.W., and Crowell, J.H., 1931. Dependence of reaction velocity upon surface and agitation. Industrial & engineering chemistry, 23 (8), 923–931. doi:10.1021/ie50260a018.
  • Höcherl, K., et al., 2002. Cyclosporine A suppresses cyclooxygenase-2 expression in the rat kidney. Journal of the American society of nephrology, 13 (10), 2427–2436. doi:10.1097/01.asn.0000031702.86799.b9.
  • Hotze, E.M., Phenrat, T., and Lowry, G.V., 2010. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. Journal of environmental quality, 39 (6), 1909–1924. doi:10.2134/jeq2009.0462.
  • Ji, W., and Liu, Z., 2021. Temozolomide-loaded solid lipid nanoparticles@ hydrogel for local treatment of tumour. Australian journal of chemistry, 74 (2), 125–134. doi:10.1071/CH20018.
  • Jindal, S., et al., 2021. Preparation and in vitro evaluation of Tacrolimus loaded liposomal vesicles by two methods: a comparative study. Journal of research in pharmacy, 25 (1), 1–1. doi:10.35333/jrp.2021.292.
  • Jouve, T., et al., 2019. An update on the safety of tacrolimus in kidney transplant recipients, with a focus on tacrolimus minimization. Expert opinion on drug safety, 18 (4), 285–294. doi:10.1080/14740338.2019.1599858.
  • Kelidari, H.R., et al., 2017. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS pharmscitech, 18 (5), 1469–1474. doi:10.1208/s12249-016-0621-0.
  • Khan, S., et al., 2016. Tacrolimus-loaded nanostructured lipid carriers for oral delivery–optimization of production and characterization. European journal of pharmaceutics and biopharmaceutics : official journal of arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 108, 277–288. doi:10.1016/j.ejpb.2016.07.017.
  • Khan, S., et al., 2016. Tacrolimus-loaded nanostructured lipid carriers for oral delivery-in vivo bioavailability enhancement. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 109, 149–157. doi:10.1016/j.ejpb.2016.10.011.
  • Khan, N., et al., 2020. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. International journal of pharmaceutics, 577, 119033. doi:10.1016/j.ijpharm.2020.119033 [31954864]
  • Komath, S., Garg, A., and Wahajuddin, M., 2018. Development and evaluation of chrysin-phospholipid complex loaded solid lipid nanoparticles-storage stability and in vitro anti-cancer activity. Journal of microencapsulation, 35 (6), 600–617. doi:10.1080/02652048.2018.1559369.
  • Korsmeyer, R.W., et al., 1983. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, 15 (1), 25–35. doi:10.1016/0378-5173(83)90064-9.
  • Kovačević, A.B., Müller, R.H., and Keck, C.M., 2020. Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). International journal of pharmaceutics, 576, 118918. doi:10.1016/j.ijpharm.2019.118918.
  • Kushwaha, K., Mishra, M.K., and Srivastava, R., 2019. Fabrication and characterization of pluronic F68 and Phospholipon 90g embedded nanoformulation for sertraline delivery: an optimized factorial design approach and in vivo study. Asian journal of pharmaceutical research and development, 7 (3), 59–66. doi:10.22270/ajprd.v7i3.505.
  • Kwon, M., et al., 2015. Bioequivalence of tacrolimus formulations with different dynamic solubility and in-vitro dissolution profiles. Archives of pharmacal research, 38 (1), 73–80. doi:10.1007/s12272-014-0343-3.
  • Liu, Y., and Xi, Y., 2019. Colloidal systems with a short-range attraction and long-range repulsion: phase diagrams, structures, and dynamics. Current opinion in colloid & interface science, 39, 123–136. doi:10.1016/j.cocis.2019.01.016.
  • Mirza, M.A., et al., 2016. A vaginal drug delivery model. Drug delivery, 23 (8), 3123–3134. doi:10.3109/10717544.2016.1153749.
  • Mortenson, A. K., 2014. Sucrose crystallinity quantification using FTIR spectroscopy (Doctoral dissertation, University of Minnesota).
  • Morton, J.F., 1991. The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands? Economic botany, 45 (3), 318–333. doi:10.1007/BF02887070.
  • Nagendra, M., et al., 2019. In vitro anti-inflammatory activity of aqueous extract of Pithecellobium dulce. Journal of pharmacognosy and phytochemistry, 8 (5), 200–201.
  • Neves, A.R., Queiroz, J.F., and Reis, S., 2016. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. Journal of nanobiotechnology, 14 (1), 1–11. doi:10.1186/s12951-016-0177-x.
  • Pandita, D., et al., 2009. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Die Pharmazie-An international journal of pharmaceutical sciences, 64 (5), 301–310.
  • Rigon, R.B., et al., 2016. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules, 21 (1), 116. doi:10.3390/molecules21010116.
  • Rosso, A., et al., 2021. Nanocomposite sponges for enhancing intestinal residence time following oral administration. Journal of controlled release : official journal of the controlled release society, 333, 579–592. doi:10.1016/j.jconrel.2021.04.004.
  • Salatin, S., et al., 2017. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Research in pharmaceutical sciences, 12 (1), 1–14. doi:10.4103/1735-5362.199041.
  • Savić, V., et al., 2019. Tacrolimus-loaded lecithin-based nanostructured lipid carrier and nanoemulsion with propylene glycol monocaprylate as a liquid lipid: Formulation characterization and assessment of dermal delivery compared to referent ointment. International journal of pharmaceutics, 569, 118624. doi:10.1016/j.ijpharm.2019.118624.
  • Serra, C.H.D.R., et al., 2015. Dissolution efficiency and bioequivalence study using urine data from healthy volunteers: a comparison between two tablet formulations of cephalexin. Brazilian journal of pharmaceutical sciences, 51 (2), 383–392. doi:10.1590/S1984-82502015000200016.
  • Shah, R., et al., 2014. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of physical science, 25 (1), 59–75.
  • Shukla, M.K., and Sharma, K., 2022. Assessment of particle size distribution and tensile properties on hybrid epoxy composite reinforced with functionalized graphene and CNT nanofillers. Journal of computational & applied research in mechanical engineering), 12 (1), 1–12.
  • Shunmugaperumal, T., and Kaur, V., 2016. In vitro anti-inflammatory and antimicrobial activities of azithromycin after loaded in chitosan-and tween 20-based oil-in-water macroemulsion for acne management. AAPS pharmscitech, 17 (3), 700–709. doi:10.1208/s12249-015-0401-2.
  • Singh, B.N., et al., 2009. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food and chemical toxicology : an international journal published for the British industrial biological research association, 47 (6), 1109–1116. doi:10.1016/j.fct.2009.01.034.
  • Sruti, J., et al., 2013. Improvement in the dissolution rate and tableting properties of cefuroxime axetil by melt-granulated dispersion and surface adsorption. Acta pharmaceutica sinica B, 3 (2), 113–122. doi:10.1016/j.apsb.2013.01.001.
  • Staatz, C.E., and Tett, S.E., 2015. Clinical pharmacokinetics of once-daily tacrolimus in solid-organ transplant patients. Clinical pharmacokinetics, 54 (10), 993–1025. doi:10.1007/s40262-015-0282-2.
  • Tao, C., et al., 2020. Evaluation of the stability and absorption of tacrolimus self-microemulsifying drug delivery system. Journal of drug delivery science and technology, 57, 101640. doi:10.1016/j.jddst.2020.101640.
  • Umapathy, E., et al., 2010. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. Journal of medicinal plants research, 4 (9), 789–795.
  • Varshosaz, J., Minayian, M., and Yazdekhasti, S., 2017. Physicochemical, pharmacodynamic and pharmacokinetic characterization of soluplus stabilized nanosuspension of tacrolimus. Current drug delivery, 14 (4), 521–535. doi:10.2174/1567201813666161003150649.
  • Waghule, T., et al., 2019. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. Journal of drug delivery science and technology, 52, 303–315. doi:10.1016/j.jddst.2019.04.026.
  • Wang, J.L., et al., 2018. Delivery of tacrolimus with cationic lipid-assisted nanoparticles for ulcerative colitis therapy. Biomaterials science, 6 (7), 1916–1922. doi:10.1039/c8bm00463c.
  • Yu, M., et al., 2018. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Current drug metabolism, 19 (6), 513–522. doi:10.2174/1389200219666180129151948.
  • Zahra, T., et al., 2022. Thiomer coated solid lipid nanoparticles for the enhanced oral bioavailability of tacrolimus: in-vitro and in-vivo evaluation. Journal of drug delivery science and technology, 77, 103892. doi:10.1016/j.jddst.2022.103892.
  • Zhang, X.Y., and Lu, W.Y., 2014. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer biology & medicine, 11 (4), 247.
  • Zhou, L., et al., 2012. Preparation of tripterine nanostructured lipid carriers and their absorption in rat intestine. Die Pharmazie-An international journal of pharmaceutical sciences, 67 (4), 304–310.
  • Zhuang, C.Y., et al., 2010. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. International journal of pharmaceutics, 394 (1-2), 179–185. doi:10.1016/j.ijpharm.2010.05.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.