64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation, characterisation, and pharmacodynamic study of myricetin pH-sensitive liposomes

ORCID Icon, , , , , , , , , , ORCID Icon, & ORCID Icon show all
Pages 269-283 | Received 15 Aug 2023, Accepted 19 Mar 2024, Published online: 15 Apr 2024

References

  • Abri Aghdam, M., et al., 2019. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of controlled release, 315, 1–22. doi: 10.1016/j.jconrel.2019.09.018.
  • Cai, J., et al., 2019. Formulation of injectable glycyrrhizic acid-hydroxycamptothecin micelles as new generation of DNA topoisomerase I inhibitor for enhanced antitumor activity. International journal of pharmaceutics, 571, 118693. doi: 10.1016/j.ijpharm.2019.118693.
  • Cao, X., et al., 2022. Preparation of pinocembrin-loaded F127/MPEG-PDLLA polymer micelles and anti-osteoporotic activity. AAPS PharmSciTech, 23 (7), 276. doi: 10.1208/s12249-022-02427-1.
  • Cao, X., et al., 2021. Improvement of oral bioavailability and anti-tumor effect of zingerone self-microemulsion drug delivery system. Journal of pharmaceutical sciences, 110 (7), 2718–2727. doi: 10.1016/j.xphs.2021.01.037.
  • Chang, Y.-H., et al., 2021. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway. ANTIOXIDANTS, 10 (4), 564. doi: 10.3390/antiox10040564.
  • Danaei, M., et al., 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10 (2), 57. doi: 10.3390/pharmaceutics10020057.
  • Ferreira, D.D.S., et al., 2013. pH-sensitive liposomes for drug delivery in cancer treatment. Therapeutic delivery, 4 (9), 1099–1123. doi: 10.4155/tde.13.80.
  • Ghosh, A., et al., 2023. Lysophosphatidylcholine-based liposome to improve oral absorption and nephroprotective effects of astaxanthin. Journal of the science of food and agriculture, 103 (6), 2981–2988. doi: 10.1002/jsfa.12329.
  • Gu, Z.Q., et al., 2022. Design, characterization, and evaluation of diosmetin-loaded solid self-microemulsifying drug delivery system prepared by electrospray for improved bioavailability. AAPS PharmSciTech, 23 (4), 106. doi: 10.1208/s12249-022-02263-3.
  • Guimaraes, D., Cavaco-Paulo, A., and Nogueira, E., 2021. Design of liposomes as drug delivery system for therapeutic applications. International journal of pharmaceutics, 601, 120571. doi: 10.1016/j.ijpharm.2021.120571.
  • He, H., et al., 2019. Adapting liposomes for oral drug delivery. Acta pharmaceutica sinica. B, 9 (1), 36–48. doi: 10.1016/j.apsb.2018.06.005.
  • Hirama, T., et al., 2017. Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. Journal of biological chemistry, 292 (34), 14292–14307. doi: 10.1074/jbc.M117.791400.
  • Jin, H.-H., Lu, Q., and Jiang, J.-G., 2016. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. Journal of dairy science, 99 (3), 1780–1790. doi: 10.3168/jds.2015-10391.
  • Karanth, H., and Murthy, R.S.R., 2007. pH-sensitive liposomes - principle and application in cancer therapy. The journal of pharmacy and pharmacology, 59 (4), 469–483. doi: 10.1211/jpp.59.4.0001.
  • Kraft, J.C., et al., 2014. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of pharmaceutical sciences, 103 (1), 29–52. doi: 10.1002/jps.23773.
  • Li, X.X., et al., 2023. Preparation, physical characterization, pharmacokinetics and anti-hyperglycemic activity of esculetin-loaded mixed micelles. Journal of pharmaceutical sciences, 112 (1), 148–157. doi: 10.1016/j.xphs.2022.06.022.
  • Li, Y.T., et al., 2022. Advances in nanoliposomes for the diagnosis and treatment of liver cancer. International journal of nanomedicine, 17, 909–925. doi: 10.2147/IJN.S349426.
  • Lin, T.-C., et al., 2023. Myricetin nanofibers enhanced water solubility and skin penetration for increasing antioxidant and photoprotective activities. Pharmaceutics, 15 (3), 906. doi: 10.3390/pharmaceutics15030906.
  • Liu, G., et al., 2022. Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Critical reviews in analytical chemistry, 52 (2), 392–412. doi: 10.1080/10408347.2020.1805293.
  • Liu, S., Perez-Ruiz, F., and Miner, J.N., 2017. Patients with gout differ from healthy subjects in renal response to changes in serum uric acid. Joint bone spine, 84 (2), 183–188. doi: 10.1016/j.jbspin.2016.04.007.
  • Liu, Y., et al., 2023. Research progress in bioanalysis and pharmacokinetics of liposome nanomedicine. Acta pharmaceutica sinica, 58, 834–843.
  • Lou, X.-J., et al., 2020. Beneficial effects of macroporous resin extract of dendrobium candidum leaves in rats with hyperuricemia induced by a high-purine diet. Evidence-Based complementary and alternative medicine, 2020, 1–10. doi: 10.1155/2020/3086106.
  • Maritim, S., Boulas, P., and Lin, Y., 2021. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. International journal of pharmaceutics, 592, 120051. doi: 10.1016/j.ijpharm.2020.120051.
  • Matsuoka, K., et al., 2016. Aggregate formation of glycyrrhizic acid. Colloids and surfaces A: Physicochemical and engineering aspects, 500, 112–117. doi: 10.1016/j.colsurfa.2016.04.032.
  • Pascart, T., and Richette, P., 2017. Current and future therapies for gout. Expert opinion on pharmacotherapy, 18 (12), 1201–1211. doi: 10.1080/14656566.2017.1351945.
  • Pattni, B.S., Chupin, V.V., and Torchilin, V.P., 2015. New developments in liposomal drug delivery. Chemical reviews, 115 (19), 10938–10966. doi: 10.1021/acs.chemrev.5b00046.
  • Rong, W.J., et al., 2022. Pinocembrin polymeric micellar drug delivery system: preparation, characterisation and anti-hyperuricemic activity evaluation. Journal of microencapsulation, 39 (5), 419–432. doi: 10.1080/02652048.2022.2096138.
  • Ruman, U., et al., 2020. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. International journal of nanomedicine, 15, 1437–1456. doi: 10.2147/IJN.S236927.
  • Semwal, D.K., et al., 2016. Myricetin: a dietary molecule with diverse biological activities. Nutrients, 8 (2), 90. doi: 10.3390/nu8020090.
  • Shi, F., et al., 2022. Enhancement of oral bioavailability and anti-hyperuricemic activity of aloe emodin via novel Soluplus (R)-glycyrrhizic acid mixed micelle system. Drug delivery and translational research, 12 (3), 603–614. doi: 10.1007/s13346-021-00969-8.
  • Singh, P., et al., 2022. Functionalized bosutinib liposomes for target specific delivery in management of estrogen-positive cancer. Colloids and surfaces B-biointerfaces, 218, 112763. doi: 10.1016/j.colsurfb.2022.112763.
  • Song, X.M.T., et al., 2021. Myricetin: a review of the most recent research. Biomedicine & pharmacotherapy, 134, 111017. doi: 10.1016/j.biopha.2020.111017.
  • Sun, C.Y., et al., 2021. Improved oral bioavailability and hypolipidemic effect of syringic acid via a self-microemulsifying drug delivery system. AAPS PharmSciTech, 22 (1), 45. doi: 10.1208/s12249-020-01901-y.
  • Thant, Y., et al., 2021. TPGS conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of Myricetin. Journal of drug delivery science and technology, 66, 102808. doi: 10.1016/j.jddst.2021.102808.
  • Torchilin, V., 2009. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European journal of pharmaceutics and biopharmaceutics, 71 (3), 431–444. doi: 10.1016/j.ejpb.2008.09.026.
  • Wang, D., et al., 2017. Mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles with varied hydrophilic/hydrophobic ratios and intracellular trafficking routes and fate of the copolymer. ACS applied materials & interfaces, 9 (8), 6916–6930. doi: 10.1021/acsami.6b16376.
  • Wang, S.F., 2018. The efficacy of febuxostat and allopurinol in the treatment of gout with hyperuricemia. Pakistan journal of pharmaceutical sciences, 31, 1623–1627.
  • Weng, W., et al., 2021. Mixed micelles for enhanced oral bioavailability and hypolipidemic effect of liquiritin: preparation, in vitro and in vivo evaluation. Drug development and industrial pharmacy, 47 (2), 308–318. doi: 10.1080/03639045.2021.1879839.
  • Xi, Y., et al., 2022. Myricetin loaded nano-micelles delivery system reduces bone loss induced by ovariectomy in rats through inhibition of osteoclast formation. Journal of pharmaceutical sciences, 111 (8), 2341–2352. doi: 10.1016/j.xphs.2022.03.014.
  • Xia, X., et al., 2022. Hyperoside-loaded TPGs/mPEG-PDLLA self-assembled polymeric micelles: preparation, characterization and in vitro/in vivo evaluation. Pharmaceutical development and technology, 27 (7), 829–841. doi: 10.1080/10837450.2022.2122506.
  • Xu, C., et al., 2020. Pharmacological activities of myricetin and its glycosides. China journal of chinese materia medica, 45, 3575–3583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.