1,137
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Equivalence of cell survival data for radiation dose and thermal dose in ablative treatments: analysis applied to essential tremor thalamotomy by focused ultrasound and gamma knife

, , , , , , , , & show all
Pages 401-410 | Received 25 Apr 2016, Accepted 28 Dec 2016, Published online: 31 Jan 2017

References

  • Hall EJ, Giaccia AJ. (2006). Radiobiology for the radiologist Philadelphia (PA): Lippincott Williams&Wilki.
  • Horsman MR, Overgaard J. (2007). Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol) 19:418–26.
  • Lederman M. (1981). The early history of radiotherapy: 1895-1939. Int J Radiat Oncol Biol Phys 7:639–48.
  • Haemmerich D. (2010). Biophysics of radiofrequency ablation. Crit Rev Biomed Eng 38:53.
  • Carrafiello G, Ierardi AM, Fontana F, et al. (2013). Microwave ablation of pancreatic head cancer: safety and efficacy. J Vasc Interv Radiol 24:1513–20.
  • Chen JC, Moriarty JA, Derbyshire JA, et al. (2000). Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214:290–7.
  • Healey TT, Dupuy DE. (2012). Microwave ablation for lung cancer. Med Health R 95:52–3.
  • Kuang M, Lu MD, Xie XY, et al. (2007). Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna–experimental and clinical studies. Radiology 242:914–24.
  • Skinner MG, Iizuka MN, Kolios MC, et al. (1998). A theoretical comparison of energy sources - microwave, ultrasound and laser - for interstitial thermal therapy. Phys Med Biol 43:3535.
  • Vargas HI, Dooley WC, Gardner RA, et al. (2004). Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Ann Surg Oncol 11:139–46.
  • Yoshitani S, Hayashi K, Kuroda M, et al. (2005). [Results of local ablation therapy for liver metastases from colorectal cancer using radiofrequency ablation and microwave coagulation therapy (RFA/MCT)]. Gan to Kagaku Ryoho 32:1666–9.
  • Zhang X, Chen B, Hu S, et al. (2008). Microwave ablation with cooled-tip electrode for liver cancer: an analysis of 160 cases. Hepatogastroenterology 55:2184–7.
  • Ali MA, Carroll KT, Rennert RC, et al. (2016). Stereotactic laser ablation as treatment for brain metastases that recur after stereotactic radiosurgery: a multiinstitutional experience. Neurosurg Focus 41:E11. PubMed PMID: 27690654.
  • Latorre M, Rinaldi C. (2009). Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P R Health Sci J 28:227–38.
  • Tseng HY, Lee GB, Lee CY, et al. (2009). Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy. IET Nanobiotechnol 3:46–54.
  • Hynynen K, Darkazanli A, Unger E, et al. (1993). MRI-guided non-invasive ultrasound surgery. Med Phy 20:107–15.
  • Ebbini ES, Ter Haar G. (2015). Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 31:77–89.
  • Maloney E, Hwang JH. (2015). Emerging HIFU applications in cancer therapy. Int J Hyperthermia 31:302–9.
  • Leksell L. (1951). The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316–19.
  • Blomgren H, Lax I, Naslund I, et al. (1995). Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 34:861–70.
  • Papiez L, Timmerman R, DesRosiers C, et al. (2003). Extracranial stereotactic radioablation: physical principles. Acta Oncol 42:882–94.
  • Timmerman R, Papiez L, McGarry R, et al. (2003). Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–55.
  • Dieterich S, Ford E, Pavord D, et al. (2015). Practical radiation oncology physics: a companion to gunderson and tepper's clinical radiation oncology. Philadelphia(PA): Elsevier - Health Sciences Division.
  • Gunderson LL, Willett CG, Calvo FA, et al. (2011). Intraoperative irradiation: techniques and results: New York (NY): Humana Press.
  • Dewey WC, Holahan EV. (1984). Hyperthermia-basic biology. Prog Exp Tumor Res 28:198–219.
  • Overgaard J. (1982). Influence of sequence and interval on the biological response to combined hyperthermia and radiation. Natl Cancer Inst Monogr 61:325–32.
  • Kosterev VV, Kramer-Ageev EA, Mazokhin VN, et al. (2015). Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia 31:443–52.
  • Gillette EL. (1984). Clinical use of thermal enhancement and therapeutic gain for hyperthermia combined with radiation or drugs. Cancer Res 44:4836s–41s.
  • Dewhirst MW, Sim DA. (1984). The utility of thermal dose as a predictor of tumor and normal tissue responses to combined radiation and hyperthermia. Cancer Res 44:4772s–80s.
  • Overgaard J. (1984). Formula to estimate the thermal enhancement ratio of a single simultaneous hyperthermia and radiation treatment. Acta Radiol Oncol 23:135–9.
  • Valdagni R, Amichetti M. (1994). Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys 28:163–9.
  • Huilgol NG, Gupta S, Sridhar CR. (2010). Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial. J Cancer Res Ther 6:492–6.
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MC, et al. (1996). Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 12:3–20.
  • Vernon CC, Hand JW, Field SB, et al. (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. Int J Radiat Oncol Biol Phys 35:731–44.
  • Sneed PK, Stauffer PR, McDermott MW, et al. (1998). Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40:287–95.
  • van der Zee J, González D, van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet 355:1119–25.
  • Harima Y, Nagata K, Harima K, et al. (2001). A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia 17:97–105.
  • Jones EL, Oleson JR, Prosnitz LR, et al. (2005). Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 23:3079–85.
  • Vasanthan A, Mitsumori M, Park JH, et al. (2005). Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency. Int J Radiat Oncol Biol Phys 61:145–53.
  • Mitsumori M, Zeng ZF, Oliynychenko P, et al. (2007). Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency. Int J Clin Oncol 12:192–8.
  • Schroeder C, Gani C, Lamprecht U, et al. (2012). Pathological complete response and sphincter-sparing surgery after neoadjuvant radiochemotherapy with regional hyperthermia for locally advanced rectal cancer compared with radiochemotherapy alone. Int J Hyperthermia 28:707–14.
  • Mallory M, Gogineni E, Jones GC, et al. (2016). Therapeutic hyperthermia: the old, the new, and the upcoming. Crit Rev Oncol Hematol 97:56–64.
  • Khan FM. (2014). The physics of radiation therapy. 5th ed. Philadelphia (PA): Wolters Kluwer Health.
  • Kirkpatrick JP, Meyer JJ, Marks LB. (2008). The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–3.
  • Lepock JR. (2005). How do cells respond to their thermal environment? Int J Hyperthermia 21:681–7.
  • Mouratidis PX, Rivens I, ter Haar G. (2015). A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells. Int J Hyperthermia 31:476–88.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Park C, Papiez L, Zhang S, et al. (2008). Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–52.
  • Kavanagh BD, Newman F. (2008). Toward a unified survival curve: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852) and Krueger et al. (Int J Radiat Oncol Biol Phys 2007;69:1262–1271). Int J Radiat Oncol Biol Phys 71:958–9.
  • Wang JZ, Huang Z, Lo SS, et al. (2010). A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high–dose rate brachytherapy. Sci Transl Med 2:39ra48.
  • Hanin LG, Zaider M. (2010). Cell-survival probability at large doses: an alternative to the linear-quadratic model. Phys Med Biol 55:4687–702.
  • Astrahan M. (2008). Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys 35:4161.
  • Guerrero M, Li XA. (2004). Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–35.
  • Garcia LM, Wilkins DE, Raaphorst GP. (2007). Alpha/beta ratio: a dose range dependence study. Int. J. Radiat. Oncol. Biol. Phys 67:587.
  • McDannold N, Zhang Y-Z, Power C, et al. (2013). Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function: laboratory investigation. J Neurosurg 119:1208–20.
  • Carlson DJ, Stewart RD, Semenenko VA, et al. (2009). Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing. Radiat Res 169;447–59.
  • Viglianti BL, Dewhirst MW, Abraham JP, et al. (2014). Rationalization of thermal injury quantification methods: application to skin burns. Burns 40:896–902.
  • Elias WJ, Huss D, Voss T, et al. (2013). A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369:640–8.
  • Rieke V, Butts Pauly K. (2008). MR thermometry. J Magn Reson Imag 27:376–90.
  • Kondziolka D, Ong JG, Lee JY, et al. (2008). Gamma Knife thalamotomy for essential tremor. J Neurosurg 108;111–17.
  • Dewey W, Hopwood L, Sapareto S, et al. (1977). Cellular responses to combinations of hyperthermia and radiation. Radiology 123:463–74.
  • Raaphorst GP, Szekely J, Lobreau A, et al. (1983). A comparison of cell killing by heat and/or X rays in Chinese hamster V79 cells, Friend erythroleukemia mouse cells, and human thymocyte MOLT-4 cells. Radiat Res 94:340–9.
  • Flentje M, Flentje D, Sapareto SA. (1984). Differential effect of hyperthermia on murine bone marrow normal colony-forming units and AKR and L1210 leukemia stem cells. Cancer Res 44:1761–6.
  • Armour EP, McEachern D, Wang Z, et al. (1993). Sensitivity of human cells to mild hyperthermia. Cancer Res 53:2740–4.
  • Raaphorst GP, Feeley MM. (1994). Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair. Int J Radiat Oncol Biol Phys 29:133–9.
  • Lepock JR. (2003). Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia 19:252.
  • Scheenstra AEH, Rossi MMG, Belderbos JSA, et al. (2014). Alpha/beta ratio for normal lung tissue as estimated from lung cancer patients treated with stereotactic body and conventionally fractionated radiation therapy. Int J Radiat Oncol Biol Phys 88:224.
  • Williams MV, Denekamp J, Fowler JF. (1985). A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys 11:87.
  • Hynynen K, Colucci V, Chung A, et al. (1996). Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol 22:1071–7.
  • Abbas G, Schuchert MJ, Pennathur A, et al. (2007). Ablative treatments for lung tumors: radiofrequency ablation, stereotactic radiosurgery, and microwave ablation. Thorac Surg Clin 17:261–71.
  • Dewhirst MW, Lora-Michiels M, Viglianti BL, et al. (2003). Carcinogenic effects of hyperthermia. Int J Hyperthermia 19:236–51.
  • Fry W, Mosberg W, Barnard J, Fry F. (1954). Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11:471–8.
  • Yarmolenko PS, Moon EJ, Landon C, et al. (2011). Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27:320–43.
  • Dewey W. (1994). Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 10:457–83.
  • Foley JL, Eames M, Snell J, et al. (2013). Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. Imaging Med 5:357–70.
  • Solazzo S, Mertyna P, Peddi H, et al. (2008). RF ablation with adjuvant therapy: comparison of external beam radiation and liposomal doxorubicin on ablation efficacy in an animal tumor model. Int J Hyperthermia 24:560–7.
  • Horkan C, Dalal K, Coderre JA, et al. (2005). Reduced tumor growth with combined radiofrequency ablation and radiation therapy in a rat breast tumor model 1. Radiology 235:81–8.
  • Grieco CA, Simon CJ, Mayo-Smith WW, et al. (2006). Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non–small-cell lung cancer. J Vasc Interv Radiol 17:1117–24.
  • Chan MD, Dupuy DE, Mayo-Smith WW, et al (2011). Combined radiofrequency ablation and high-dose rate brachytherapy for early-stage non-small-cell lung cancer . Brachytherapy 10:253–9.
  • Imada H, Nomoto S, Tomimatsu A, et al. (1999). Local control of nonsmall cell lung cancer by radiotherapy combined with high power hyperthermia using an 8 MHz RF capacitive heating device. Jpn J Hyperthermic Oncol 15:19–24.
  • Anscher MS, Samulski TV, Dodge R, et al. (1997). Combined external beam irradiation and external regional hyperthermia for locally advanced adenocarcinoma of the prostate. Int J Radiat Oncol Biol Phys 37:1059–65.
  • Lindquist C, Paddick I. (2007). The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Neurosurgery 61:130–40.
  • Livraghi T, Mueller PR, Silverman SG. (2008). Tumor ablation: principles and practice. In: van Sonnenberg E, McMullen W, Solbiati L, eds. New York (NY): Springer Science and Business Media.
  • Lagendijk J, Schellekens M, Schipper J, et al. (1984). A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment. Phys Med Biol 29:495.
  • Barranco SC, Romsdahl MM, Humphrey RM. (1971). The radiation response of human malignant melanoma cells grown in vitro. Cancer Res 31:830–3.
  • Aubry JF, Tanter M, Pernot M, et al. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93.
  • Clement G, Hynynen K. (2002). A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47:1219–36.
  • Moskvin V, Timmerman R, Fau - DesRosiers C, et al. (2004). Monte carlo simulation of the Leksell Gamma Knife: II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurgery. Phys Med Biol 49:4879–95.
  • Rosner GL, Clegg ST, Prescott DM, et al. (1996). Estimation of cell survival in tumours heated to nonuniform temperature distributions. Int J Hyperthermia 12:223–39.
  • Hong ZY, Song KH, Yoon JH, et al. (2015). An experimental model-based exploration of cytokines in ablative radiation-induced lung injury in vivo and in vitro. Lung 193:409–19.
  • Kahn J, Tofilon PJ, Camphausen K. (2012). Preclinical models in radiation oncology. Radiat Oncol 7:223.
  • Pearce JA. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia 29:262–80.
  • Griffin RJ, Dings RP, Jamshidi-Parsian A, et al. (2010). Mild temperature hyperthermia and radiation therapy: role of tumour vascular thermotolerance and relevant physiological factors. Int J Hyperthermia 26:256–63.
  • Song CW, Shakil A, Griffin RJ, et al. (1997). Improvement of tumor oxygenation status by mild temperature hyperthermia alone or in combination with carbogen. Semin Oncol 24:626–32.
  • Liang P, MacRae TH. (1997). Molecular chaperones and the cytoskeleton. J Cell Sci 110:1431–40.
  • Pratt WB, Silverstein AM, Galigniana MD. (1999). A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cellular Signal 11:839–51.
  • Ling CC, Robinson E. (1988). Moderate hyperthermia and low dose rate irradiation. Radiat Res 114:379–84.
  • Sapareto SA, Hopwood LE, Dewey WC, Raju MR, Gray JW. (1978). Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res 38:393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.