946
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images

ORCID Icon, , , , &
Pages 101-111 | Received 12 Aug 2016, Accepted 12 Apr 2017, Published online: 19 May 2017

References

  • Carpentier A, Itzcovitz J, Payen D, et al. (2008). Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63:ONS21–ONS9.
  • Carpentier A, McNichols RJ, Stafford RJ, et al. (2011). Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med 43:943–50.
  • Carpentier A, Chauvet D, Reina V, et al. (2012). MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med 44:361–8.
  • Mohammadi AM, Schroeder JL. (2014). Laser interstitial thermal therapy in treatment of brain tumors – the NeuroBlate System. Expert Rev Med Dev 11:109–19.
  • Siegel RL, Miller KD, Jemal A. (2015). Cancer statistics, 2015. CA: Cancer J Clin 65:5–29.
  • Kalkanis SN, Linskey ME. (2010). Evidence-based clinical practice parameter guidelines for the treatment of patients with metastatic brain tumors: introduction. J Neuro-Oncol 96:7–10.
  • Owonikoko TK, Arbiser J, Zelnak A, et al. (2014). Current approaches to the treatment of metastatic brain tumours. Nat Rev: Clin Oncol 11:203–22.
  • Preusser M, Weller M. (2015). Brain metastasis research: a late awakening. Chin Clin Oncol 4:17.
  • Patchell RA. (2003). The management of brain metastases. Cancer Treatment Rev 29:533–40.
  • Bafaloukos D, Gogas H. (2004). The treatment of brain metastases in melanoma patients. Cancer Treatment Rev 30:515–20.
  • Eichler AF, Loeffler JS. (2007). Multidisciplinary management of brain metastases. Oncologist 12:884–98.
  • Siu A, Wind JJ, Iorgulescu JB, et al. (2011). Radiation necrosis following treatment of high grade glioma—a review of the literature and current understanding. Acta Neurochir 154:191–201.
  • Patel TR, McHugh BJ, Bi WL, et al. (2011). A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am J Neuroradiol 32:1885–92.
  • Chao ST, Ahluwalia MS, Barnett GH, et al. (2013). Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87:449–57.
  • Rahmathulla G, Marko NF, Weil RJ. (2013). Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 20:485–502.
  • Rahmathulla G, Recinos PF, Valerio JE, et al. (2012). Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg 90:192–200.
  • Torres-Reveron J, Tomasiewicz HC, Shetty A, et al. (2013). Stereotactic laser induced thermotherapy (LITT): a novel treatment for brain lesions regrowing after radiosurgery. J Neuro-Oncol 113:495–503.
  • Rao MS, Hargreaves EL, Khan AJ, et al. (2014). Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis. Neurosurgery 74:658–67.
  • Patel TR, Chiang VLS. (2014). Laser interstitial thermal therapy for treatment of post-radiosurgery tumor recurrence and radiation necrosis. Photon Lasers Med 3:95–105.
  • Curry DJ, Gowda A, McNichols RJ, Wilfong AA. (2012). MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav 24:408–14.
  • Wilfong AA, Curry DJ. (2013). Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia 54:109–14.
  • Tovar-Spinoza Z, Carter D, Ferrone D, et al. (2013). The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst 29:2089–94.
  • Gonzalez-Martinez J, Vadera S, Mullin J, et al. (2014). Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery 10 Suppl 2:167–72. discussion 72–3.
  • Choi H, Tovar-Spinoza Z. (2014). MRI-guided laser interstitial thermal therapy of intracranial tumors and epilepsy: state-of-the-art review and a case study from pediatrics. Photon Lasers Med 3:107–15.
  • Esquenazi Y, Kalamangalam GP, Slater JD, et al. (2014). Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy Res 108:547–54.
  • Willie JT, Laxpati NG, Drane DL, et al. (2014). Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery 74:569–85.
  • Lewis EC, Weil AG, Duchowny M, et al. (2015). MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia 56:1590–8.
  • Tovar-Spinoza Z, Choi H. (2016). Magnetic resonance-guided laser interstitial thermal therapy: report of a series of pediatric brain tumors. J Neurosurg Pediatr 17:723–33.
  • Attiah MA, Paulo DL, Danish SF, et al. (2015). Anterior temporal lobectomy compared with laser thermal hippocampectomy for mesial temporal epilepsy: a threshold analysis study. Epilepsy Res 115:1–7.
  • McNichols RJ, Kangasniemi M, Gowda A, et al. (2004) Technical developments for cerebral thermal treatment: water-cooled diffusing laser fibre tips and temperature-sensitive MRI using intersecting image planes. Int J Hypertherm 20:45–56.
  • de Senneville BD, Quesson B, Moonen CTW. (2005). Magnetic resonance temperature imaging. Int J Hypertherm 21:515–31.
  • Rieke V, Butts Pauly K. (2008). MR thermometry. J Magn Reson Imag 27:376–90.
  • Stafford RJ, Shetty A, Elliott AM, et al. (2010). Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol 184:1514–20.
  • Oelfke U, Bortfeld T. (2001). Inverse planning for photon and proton beams. Med Dosim 26:113–24.
  • Palma D, Vollans E, James K, et al. (2008). Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 72:996–1001.
  • Khalil-Bustany IS, Diederich CJ, Polak E, Kirjner-Neto C. (1998). Minimax optimization-based inverse treatment planning for interstitial thermal therapy. Int J Hypertherm 14:347–66.
  • Prakash P, Salgaonkar VA, Diederich CJ. (2013). Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hypertherm 29:296–307.
  • Haase S, Süss P, Schwientek J, et al. (2012). Radiofrequency ablation planning: an application of semi-infinite modelling techniques. Eur J Oper Res 218:856–64.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:1725–32.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Dewey WC. (1994). Arrhenius relationships from the molecule and cell to the clinic. Int J Hypertherm 10:457–83.
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, et al. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hypertherm 19:267–94.
  • Pearce JA. (2009). Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. Proc SPIE 7181:718104–15.
  • Yung JP, Shetty A, Elliott A, et al. (2010). Quantitative comparison of thermal dose models in normal canine brain. Med Phys 37:5313–21.
  • Pearce JA. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hypertherm 29:262–80.
  • Mohammed Y, Verhey JF. (2005). A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online 4:2.
  • Fahrenholtz SJ, Stafford RJ, Maier F, et al. (2013). Generalised polynomial chaos-based uncertainty quantification for planning MRgLITT procedures. Int J Hypertherm 29:324–35.
  • Fahrenholtz SJ, Moon TY, Franco M, et al. (2015). A model evaluation study for treatment planning of laser-induced thermal therapy thermal therapy. Int J Hypertherm 31:705–14.
  • Altrogge I, Preusser T, Kroger T, et al. (2012). Sensitivity analysis for the optimization of radiofrequency ablation in the presence of material parameter uncertainty. Int J Uncertain Quant 2:295–321.
  • Stone M. (1974). Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B (Method) 36:111–47.
  • Geisser S. (1975). The predictive sample reuse method with applications. J Am Stat Assoc 70:320–8.
  • Kohavi R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, San Francisco, CA. pp. 1137–43.
  • Browne M. (2000). Cross-validation methods. J Math Psychol 44:108–32.
  • Arlot S, Celisse A. (2010). A survey of cross-validation procedures for model selection. Stat Surv 4:40–79.
  • Fahrenholtz S. (2015). Prediction of laser ablation in brain: sensitivity, calibration, and validation [UT GSBS Dissertations and Theses].
  • Stafford RJ, Price RE, Diederich CJ, et al. (2004). Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imag 20:706–14.
  • Pearce J. (2011). Mathematical models of laser-induced tissue thermal damage. Int J Hypertherm 27:741–50.
  • Diller KR, Valvano JW, Pearce JA. (2005). Bioheat transfer. In: Kreith F, Goswami Y, eds. The CRC handbook of mechanical engineering. 2nd ed. Boca Raton: CRC Press, 4–278.
  • Boyce WE, Diprima RC, Haines CW. (2001). Elementary differential equations and boundary value problems. 7th ed. New York: Wiley.
  • Duck FA. (1990). Physical properties of tissue: a comprehensive reference book. London: Academic Press.
  • Welch AJ, Gemert MJCv. (2010). Optical-thermal response of laser-irradiated tissue. 2nd ed. New York: Springer.
  • Dice LR. (1945). Measures of the amount of ecologic association between species. Ecol Soc Am 26:297–302.
  • Menze BH, Jakab A, Bauer S, et al. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imag 34:1993–2024.
  • Toth R, Sperling D, Madabhushi A, et al. (2016). Quantifying post-laser ablation prostate therapy changes on MRI via a domain-specific biomechanical model: preliminary findings. PLoS One 11:e0150016.
  • Deshazer G, Merck D, Hagmann M, et al. (2016). Physical modeling of microwave ablation zone clinical margin variance. Med Phys 43:1764–76.
  • Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. (1994). Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imag 13:716–24.
  • Henriques F. (1947). Studies of thermal injury: V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 43:489.
  • Jethwa PR, Barrese JC, Gowda A, et al. (2012). Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 71:ons133–ons45.
  • Perälä J, Klemola R, Kallio R, et al. (2014). MRI-guided laser ablation of neuroendocrine tumor hepatic metastases. Acta Radiol Short Rep 3:2047981613499753.
  • Wichmann JL, Beeres M, Borchard BM, et al. (2013). Evaluation of MRI T1-based treatment monitoring during laser-induced thermotherapy of liver metastases for necrotic size prediction. Int J Hypertherm 30:19–26.
  • Manuchehrabadi N, Zhu L. (2014). Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int J Hypertherm 30:349–61.
  • Tatsui CE, Stafford RJ, Li J, et al. (2015). Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis. J Neurosurg: Spine 23:400.
  • Tatsui CE, Lee S-H, Amini B, et al. (2016). Spinal laser interstitial thermal therapy. Neurosurgery 79:S73–S82.
  • Barnes KD, Shafirstein G, Webber JS, et al. (2013). Hyperthermia-enhanced indocyanine green delivery for laser-induced thermal ablation of carcinomas. Int J Hypertherm 29:474–9.
  • MacLellan CJ, Fuentes D, Elliott AM, et al. (2014). Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation. Int J Hypertherm 30:47–55.
  • Mooney R, Schena E, Saccomandi P, et al. (2017). Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings. Int J Hypertherm 33:150–9.
  • Franklin JM, Gebski V, Poston GJ, Sharma RA. (2014). Clinical trials of interventional oncology-moving from efficacy to outcomes. Nat Rev Clin Oncol Group 12:93–104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.