4,944
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Inactivation kinetics of food-borne pathogens subjected to thermal treatments: a review

, , &
Pages 177-188 | Received 21 Apr 2017, Accepted 23 Aug 2017, Published online: 02 Mar 2018

References

  • [CDCP]. Centers for Disease Control and Prevention. (2013). Multistate outbreak of Salmonella bredeney infections linked to peanut butter manufactured by Sunland. Inc. [EB/OL]. Available from: http://wwwcdcgov/salmonella/bredeney-09-12/.
  • [CDCP]. Centers for Disease Control and Prevention. (2013). Multistate outbreak of human Salmonella enteritidis infections linked to Turkish pinenuts. [EB/OL]. Available from: http://wwwcdcgov/salmonella/pinenuts-enteriditis/.
  • Keady S, Briggs G, Farrar J. (2004). Outbreak of Salmonella Serotype Enteritidis infections associated with raw almonds—United States and Canada. Morbid Mortal Week Rep 53:484–7.
  • Miller BD, Rigdon CE, Ball J, et al. (2012). Use of traceback methods to confirm the source of a multistate Escherichia coli O157:H7 outbreak due to in-shell hazelnuts. J Food Protect 75:320–7.
  • Neilk KP, Biggerstaff G, Macdonald JK, et al. (2012). A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States. Clin Infect Dis 54:511–8.
  • Van Doren JM, Neil KP, Parish M, et al. (2013). Foodborne illness outbreaks from microbial contaminants in spices. Food Microbiol 36:456–64.
  • Teramoto S, Tanabe Y, Okano E, et al. (2010). A first fatal neonatal case of Enterobacter sakazakii infection in Japan. Pediatr Int 52:312–3.
  • Mead PS, Slutsker L, Dietz V, et al. (1999). Food-related illness and death in the United States. Emerg Infect Dis 5:607–25.
  • Klontz K, Klontz J, Mody R, Hoekstra R. (2010). Analysis of tomato and Jalapeno and serrano pepper imports into the United States from Mexico before and during a national outbreak of Salmonella serotypes. J Food Protect 73:1967.
  • Nascimento Mda S, Brum DM, Pena PO, et al. (2012). Inactivation of Salmonella during cocoa roasting and chocolate conching. Int J Food Microbiol 159:225–9.
  • Rajkowski KT. (2012). Thermal inactivation of Escherichia coli O157:H7 and Salmonella on catfish and tilapia. Food Microbiol 30:427–31.
  • Beuchat LR, Manna DA. (2011). Inactivation of Salmonella on pecan nutmeats by hot air treatment and oil roasting. J Food Protect 74:1441–50.
  • Bari ML, Nei D, Sotome I, et al. (2010). Effectiveness of superheated steam and gas catalytic infrared heat treatments to inactivate Salmonella on raw almonds. Foodborne Pathog Dis 7:845–50.
  • Du WX, Abd SJ, McCarthy KL, Harris LJ. (2010). Reduction of Salmonella on inoculated almonds exposed to hot oil. J Food Protect 73:1238–46.
  • Bingol G, Yang JH, Brandl MT, et al. (2011). Infrared pasteurization of raw almonds. J Food Eng 104:387–93.
  • Li R, Kou X, Cheng T, et al. (2017). Verification of radio frequency pasteurization process for in-shell almonds. J Food Eng 192:103–10.
  • Kim SY, Sagong HG, Choi SH, et al. (2012). Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. Int J Food Microbiol 153:171–5.
  • Sung H-J, Kang D-H. (2014). Effect of a 915 MHz microwave system on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in salsa. LWT – Food Sci Technol 59:754–9.
  • Lee SY, Sagong HG, Ryu S, Kang DH. (2012). Effect of continuous ohmic heating to inactivate Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. J Appl Microbiol 112:723–31.
  • Villa-Rojas R, Tang J, Wang S, et al. (2013). Thermal inactivation of Salmonella enteritidis PT 30 in almond kernels as influenced by water activity. J Food Protect 76:26–32.
  • Juneja VK, Friedman M. (2008). Carvacrol and cinnamaldehyde facilitate thermal destruction of Escherichia coli O157: H7 in raw ground beef. J Food Protect 71:1604–11.
  • Juneja VK, Novak JS. (2003). Heat resistance of Escherichia coli O157: H7 in cook-in-bag ground beef as affected by pH and acidulant. Int J Food Sci Technol 38:297–304.
  • Juneja VK, Marks HM, Mohr T. (2003). Predictive thermal inactivation model for effects of temperature, sodium lactate, NaCl, and sodium pyrophosphate on Salmonella serotypes in ground beef. Appl Environ Microbiol 69:5138–56.
  • Juneja VK, Cadavez V, Gonzales-Barron U, Mukhopadhyay S. (2015). Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157:H7 in ground beef. Food Res Int 69:289–304.
  • Ohara MD, Xiong QB, Boyer JW, Leeper DB. (1992). Intrinsic thermal response, thermotolerance development and stepdown heating in murine bone marrow progenitor cells. Int J Hyperther 8:451–61.
  • Lepock JR. (2005). How do cells respond to their thermal environment. Int J Hyperther 21:681–7.
  • Moussa M, Goldberg SN, Kumar G, et al. (2016). Effect of thermal dose on heat shock protein expression after radio-frequency ablation with and without adjuvant nanoparticle chemotherapies. Int J Hyperther 32:829–41.
  • Bermúdez-Aguirre D, Corradini MG. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Res Int 45:700–12.
  • Juneja VK, Garcia-Davila J, Lopez-Romero JC, et al. (2014). Modeling the effects of temperature, sodium chloride, and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in Turkey. J Food Protect 77:1696–702.
  • Juneja V, Mukhopadhyay S, Marks H, et al. (2014). Predictive thermal inactivation model for effects and interactions of temperature, NaCl, sodium pyrophosphate, and sodium lactate on Listeria monocytogenes in ground beef. Food Bioprocess Technol 7:437–46.
  • Juneja VK, Altuntas EG, Ayhan K, et al. (2013). Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols. Int J Food Microbiol 164:54–9.
  • Jordan JS, Gurtler JB, Marks HM, et al. (2011). A mathematical model of inactivation kinetics for a four-strain composite of Salmonella Enteritidis and Oranienburg in commercial liquid egg yolk. Food Microbiol 28:67–75.
  • Juneja VK, Gonzales-Barron U, Butler F, et al. (2013). Predictive thermal inactivation model for the combined effect of temperature, cinnamaldehyde and carvacrol on starvation-stressed multiple Salmonella serotypes in ground chicken. Int J Food Microbiol 165:184–99.
  • Pradhan A, Li M, Li Y, et al. (2012). A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage. Poultry Sci 91:1482–8.
  • Nagelkerke NJD. (1991). A note on a general definition of the coefficient of determination. Biometrika Trust 78:691–2.
  • Huang K, Tian H, Gai L, Wang J. (2012). A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. J Food Eng 111:191–207.
  • Baranyi J, Pin C, Ross T. (1999). Validating and comparing predictive models. Int J Food Microbiol 48:159–66.
  • Ross T. (1996). Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol 81:501–8.
  • Augustin JC, Carlier V, Rozier J. (1998). Mathematical modelling of the heat resistance of Listeria monocytogenes. J Appl Microbiol 84:185–91.
  • Humpheson L, Adams MR, Anderson WA, Cole MB. (1998). Biphasic thermal inactivation kinetics in Salmonella enteritidis PT4. Appl Environ Microbiol 64:459–64.
  • Cole MB, Davies KW, Munro G, et al. (1993). A Vitalistic model to describe the thermal inactivation of Listeria-Monocytogenes. J Ind Microbiol 12:232–9.
  • Mattick KL, Jorgensen F, Wang P, et al. (2001). Effect of challenge temperature and solute type on heat tolerance of Salmonella serovars at low water activity. Appl Environ Microbiol 67:4128–36.
  • Boutibonnes P, Giard JC, Hartke A, et al. (1993). Characterization of the heat-shock response in Enterococcus-Faecalis. Anton Leeuw J Microbiol 64:47–55.
  • Lee SY, Kang DH. (2009). Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control 20:1006–12.
  • Fujikawa H, Morozumi S, Smerage GH, Teixeira AA. (2000). Comparison of capillary and test tube procedures for analysis of thermal inactivation kinetics of mold spores. J Food Protect 63:1404–9.
  • Whiting R, Golden M. (2002). Variation among Escherichia coli O157: H7 strains relative to their growth, survival, thermal inactivation, and toxin production in broth. Int J Food Microbiol 75:127–33.
  • Gabriel AA, Nakano H. (2011). Effects of culture conditions on the subsequent heat inactivation of E. coli O157:H7 in apple juice. Food Control 22:1456–60.
  • Huemer IA, Klijn N, Vogelsang HWJ, Langeveld LPM. (1998). Thermal death kinetics of spores of Bacillus sporothermodurans isolated from UHT milk. Int Dairy J 8:851–5.
  • Odlaug TE, Pflug IJ. (1977). Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Appl Environ Microbiol 34:23–9.
  • Chung HJ, Wang S, Tang J. (2007). Influence of heat transfer with tube methods on measured thermal inactivation parameters for Escherichia coli. J Food Protect 70:851–9.
  • Yuk HG, Geveke DJ, Zhang HQ, Jin TZ. (2009). Comparison of aluminum thermal-death-time disks with a pilot-scale pasteurizer on the thermal inactivation of Escherichia coli K12 in apple cider. Food Control 20:1053–7.
  • Chung HJ, Birla SL, Tang J. (2008). Performance evaluation of aluminum test cell designed for determining the heat resistance of bacterial spores in foods. LWT-Food Sci Technol 41:1351–9.
  • Jin T, Zhang H, Boyd G, Tang J. (2008). Thermal resistance of Salmonella enteritidis and Escherichia coli K12 in liquid egg determined by thermal-death-time disks. J Food Eng 84:608–14.
  • Buchner C, Thomas S, Jaros D, Rohm H. (2012). Fast-responding thermal-death-time tubes for the determination of thermal bacteria inactivation. Eng Life Sci 12:109–12.
  • Osaili TM, Al-Nabulsi AA, Shaker RR, et al. (2013). Thermal inactivation of Salmonella Typhimurium in chicken shawirma (gyro). Int J Food Microbiol 166:15–20.
  • Li C, Huang L, Chen J. (2014). Comparative study of thermal inactivation kinetics of Salmonella spp. in peanut butter and peanut butter spread. Food Control 45:143–9.
  • Takhar PS, Head KL, Hendrix KM, Smith DM. (2009). Predictive modeling of Salmonella species inactivation in ground pork and turkey during cooking. Int J Food Eng 5:1–18.
  • Harris LJ, Uesugi AR, Abd SJ, McCarthy KL. (2012). Survival of Salmonella Enteritidis PT 30 on inoculated almond kernels in hot water treatments. Food Res Int 45:1093–8.
  • Jeong SG, Kang DH. (2014). Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating. Int J Food Microbiol 176:15–22.
  • Izurieta WP, Komitopoulou E. (2012). Effect of moisture on Salmonella spp. heat resistance in cocoa and hazelnut shells. Food Res Int 45:1087–92.
  • Al-holy M, Quinde Z, Guan D, et al. (2004). Inactivation of Listeria innocua in nisin-treated salmon and sturgeon caviar heated by radio frequency. J Food Protect 67:1848–54.
  • Gurtler J, Zhang H, Zhang L, et al. (2008). Evaluation of glass capillary tube and TDT disk methods for determining thermal inactivation kinetics of Salmonella in liquid whole egg. International Association for Food Protection, 95th Annual Meeting; Columbus.
  • Basaran-Akgul N. (2013). Comparative study of thermal kinetics for clostridium sporogenes PA 3679 inactivation using glass capillary tube and aluminum tube methods in carrot juice and phosphate buffer. J Pure Appl Microbiol 7:117–24.
  • Stephens PJ, Cole MB, Jones MV. (1994). Effect of heating rate on the thermal inactivation of Listeria monocytogenes. J Appl Bacteriol 77:702–8.
  • Foster AM, Ketteringham LP, Purnell GL, et al. (2006). New apparatus to provide repeatable surface temperature–time treatments on inoculated food samples. J Food Eng 76:19–26.
  • Gil MM, Pereira PM, Brandao TR, et al. (2006). Integrated approach on heat transfer and inactivation kinetics of microorganisms on the surface of foods during heat treatments—software development. J Food Eng 76:95–103.
  • James S, Evans J. (2006). Predicting the reduction in microbes on the surface of foods during surface pasteurisation—the ‘BUGDEATH’ project. J Food Eng 76:1–6.
  • Kou XX, Li R, Hou LX, et al. (2016). Performance of a heating block system designed for studying the heat resistance of bacteria in foods. Sci Rep 6:30758.
  • Yang J, Bingol G, Pan Z, et al. (2010). Infrared heating for dry-roasting and pasteurization of almonds. J Food Eng 101:273–80.
  • Sun Y, Laird DT, Shieh YC. (2012). Temperature-dependent survival of hepatitis a virus during storage of contaminated onions. Appl Environ Microbiol 78:4976–83.
  • Torok T, King JAD. (1991). Thermal inactivation kinetics of food-borne yeasts. J Food Sci 56:6–9.
  • Chen GB, Campanella OH, Corvalan CM, Haley TA. (2008). On-line correction of process temperature deviations in continuous retorts. J Food Eng 84:258–69.
  • Peleg M. (2006). Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactivation. Boca Raton (FL): CRC.
  • Borrelli MJ, Thompson LL, Cain CA, Dewey WC. (1990). Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 °C to 57.0 °C. Int J Radiat Oncol Biol Phys 19:389–99.
  • Corradini MG, Peleg M. (2009). Dynamic model of heat inactivation kinetics for bacterial adaptation. Appl Environ Microbiol 75:2590–7.
  • Kamau D, Doores S, Pruitt K. (1990). Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lactoperoxidase system. Appl Environ Microbiol 56:2711–6.
  • Cerf O. (1977). Tailing of survival curves of bacterial spores. J Appl Bacteriol 42:1–9.
  • Archer J, Jervis ET, Bird J, Gaze JE. (1998). Heat resistance of Salmonella weltevreden in low-moisture environments. J Food Protect 61:969–73.
  • Shachar D, Yaron S. (2006). Heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter. J Food Protect 69:2687–91.
  • Ma L, Zhang GD, Gerner-Smidt P, et al. (2009). Thermal inactivation of Salmonella in peanut butter. J Food Protect 72:1596–601.
  • Tomlins RL, Ordal ZJ. (1976). Thermal injury and inactivation in vegetative bacteria. In: Skinner FA, Hugo WB, eds. Inhibition and inactivation of vegetative microbes. New York: Academic Press, 153.
  • Juneja VK. (2003). Predictive model for the combined effect of temperature, sodium lactate, and sodium diacetate on the heat resistance of Listeria monocytogenes in beef. J Food Protect 66:804–11.
  • Juneja VK, Eblen BS. (1999). Predictive thermal inactivation model for Listeria monocytogenes with temperature, pH, NaCl, and sodium pyrophosphate as controlling factors. J Food Protect 62:986–93.
  • Juneja VK, Marmer BS, Eblen BS. (1999). Predictive model for the combined effect of temperature, pH, sodium chloride, and sodium pyrophosphate on the heat resistance of Escherichia coli O157: H7. J Food Saf 19:147–60.
  • Lopez S, Prieto M, Dijkstra J, et al. (2004). Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol 96:289–300.
  • Mafart P, Couvert O, Gaillard S, Leguerinel I. (2002). On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int J Food Microbiol 72:107–13.
  • Martinus AJS, Boekel V. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139–59.
  • Rodrigues D, Banobre-Lopez M, Espina B, et al. (2013). Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling 29:1225–32.
  • Banobre-Lopez M, Rodrigues D, Espina B, et al. (2013). Control of bacterial cells growths by magnetic hyperthermia. IEEE Trans Magn 49:3508–11.
  • Valdramidis VP, Geeraerd AH, Tiwari BK, et al. (2011). Estimating the efficacy of mild heating processes taking into account microbial non-linearities: a case study on the thermisation of a food simulant. Food Control 22:137–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.