10,300
Views
262
CrossRef citations to date
0
Altmetric
Review

Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans

, , , &
Pages 1316-1328 | Received 17 Jul 2017, Accepted 17 Jan 2018, Published online: 06 Feb 2018

References

  • Louis DN, Perry A, Reifenberger G, et al. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–20.
  • Iacob G, Dinca EB. (2009). Current data and strategy in glioblastoma multiforme. J Med Life 2:386–93.
  • Ostrom QT, Gittleman H, Fulop J, et al. (2015). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 17(Suppl.4):iv1–62.
  • Glioblastoma Multiforme. (2017). Available from: http://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Glio-blastoma-Multiforme
  • Stupp R, Mason WP, van den Bent MJ, et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–96.
  • Jackson M, Hassiotou F, Nowak A. (2015). Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36:177–85.
  • Hochberg FH, Pruitt A. (1980). Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–11.
  • De Bacco F, D'Ambrosio A, Casanova E, et al. (2016). MET inhibition overcomes radiation resistance of glioblastoma stem-like cells. EMBO Mol Med 8:550–68.
  • Safari M, Khoshnevisan A. (2015). Cancer stem cells and chemoresistance in glioblastoma multiform: a review article. J Stem Cells 10:271–85.
  • Bao S, Wu Q, McLendon RE, et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–60.
  • Wang D, Berglund A, Kenchappa RS, et al. (2016). BIRC3 is a novel driver of therapeutic resistance in glioblastoma. Sci Rep 6:21710.
  • Kleihues P, Sobin LH. (2000). World Health Organization classification of tumors. Cancer 88:2887.
  • Stupp R, Hegi ME, Mason WP, et al. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–66.
  • Hadjipanayis CG, Widhalm G, Stummer W. (2015). What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77:663–73.
  • Aminolevulinic acid hydrochloride, known as ALA HCl (Gleolan, NX Development Corp.) as an optical imaging agent indicated in patients with gliomas. (2017). Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm562645.htm
  • Toraya-Brown S, Fiering S. (2014). Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia 30:531–9.
  • Roussakow S. (2013). The history of hyperthermia rise and decline. Conf Pap Med 2013:1.
  • Attaluri A, Kandala SK, Wabler M, et al. (2015). Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperthermia 31:359–74.
  • Gunderson L, Tepper J. Clinical radiation oncology. 3rd ed.
  • Skitzki JJ, Repasky EA, Evans SS. (2009). Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs (Lond, England: 2000) 10:550–8.
  • Silva AC, Oliveira TR, Mamani JB, et al. (2011). Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed 6:591–603.
  • van der Zee J. (2002). Heating the patient: a promising approach? Ann Oncol 13:1173–84.
  • Kalamida D, Karagounis IV, Mitrakas A, et al. (2015). Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression. PLoS ONE 10:e0116021.
  • Lee Titsworth W, Murad GJ, Hoh BL, et al. (2014). Fighting fire with fire: the revival of thermotherapy for gliomas. Anticancer Res 34:565–74.
  • Kampinga HH. (2006). Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 22:191–6.
  • Pu P-y, Zhang Y-z, Jiang D-h. (2000). Apoptosis induced by hyperthermia in human glioblastoma cell line and murine glioblastoma. Chin J Cancer Res 12:257–62.
  • Fukami T, Nakasu S, Baba K, et al. (2004). Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines. J Neurooncol 70:319–31.
  • Wang H-Y, Fu JC-M, Lee Y-C, et al. (2013). Hyperthermia stress activates heat shock protein expression via propyl isomerase 1 regulation with heat shock factor 1. Mol Cell Biol 33:4889–99.
  • Quanz M, Herbette A, Sayarath M, et al. (2012). Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem 287:8803–15.
  • Schmid TE, Multhoff G. (2012). Radiation-induced stress proteins – the role of heat shock proteins (HSP) in anti-tumor responses. CMC 19:1765–70.
  • Hermisson M, Strik H, Rieger J, et al. (2000). Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology 54:1357–65.
  • Ampie L, Choy W, Lamano JB, et al. (2015). Heatshock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol 123:441–8.
  • Bloch O, Lim M, Sughrue ME, et al. (2017). Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral PD-L1 expression on response to therapy. Clin Cancer Res 23:3575.
  • Iwata K, Shakil A, Hur WJ, et al. (1996). Tumour pO2 can be increased markedly by mild hyperthermia. Br J Cancer Suppl 27:S217–S21.
  • Krawczyk PM, Eppink B, Essers J, et al. (2011). Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 108:9851–6.
  • Hermisson M, Wagenknecht B, Wolburg H, et al. (2000). Hyperthermia enhanced chemosensitivity of human malignant glioma cells. Anticancer Res 19:2338–23.
  • Raaphorst GP, Chabot P, Doja S, et al. (1996). Effect of hyperthermia on cisplatin sensitivity in human glioma and ovarian carcinoma cell lines resistant and sensitive to cisplatin treatment. Int J Hyperthermia 12:211–22.
  • Man J, Shoemake JD, Ma T, et al. (2015). Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res 75:1760–9.
  • Kampinga HH, Dikomey E. (2001). Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77:399–408.
  • Mehta M, Khan A, Danish S, et al. (2015). Radiosensitization of primary human glioblastoma stem-like cells with low-dose AKT inhibition. Mol Cancer Ther 14:1171–80.
  • Raaphorst GP, Feeley MM. (1994). Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair. Int J Radiat Oncol Biol Phys 29:133–9.
  • Kaur P, Hurwitz MD, Krishnan S, et al. (2011). Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 3:3799–823.
  • Chatterjee DK, Diagaradjane P, Krishnan S. (2011). Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2:1001–14.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia 29:706–14.
  • Gilchrist RK, Medal R, Shorey WD, et al. (1957). Selective inductive heating of lymph nodes. Ann Surg 146:596–606.
  • Mahmoudi K, Hadjipanayis CG. (2014). The application of magnetic nanoparticles for the treatment of brain tumors. Front Chem 2:109.
  • Dennis CL, Ivkov R. (2013). Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia 29:715–29.
  • Carrey J, Mehdaoui B, Respaud M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921.
  • Dormann JL, Fiorani D, Tronc E. (2007). Magnetic relaxation in fine-particle systems. Advances in chemical physics. Hoboken (NJ): John Wiley & Sons, Inc., 283–494.
  • Dennis CL, Krycka KL, Borchers JA, et al. (2015). Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field. Adv Funct Mater. 25:4300–11.
  • Hu R, Ma S, Li HU, et al. (2011). Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol Lett 2:1161–4.
  • Kossatz S, Grandke J, Couleaud P, et al. (2015). Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66.
  • Zadnik PL, Molina CA, Sarabia-Estrada R, et al. (2014). Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. J Neurosurg Spine 20:740–50.
  • Jordan A, Scholz R, Maier-Hauff K, et al. (2006). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14.
  • Zhao Q, Wang L, Cheng R, et al. (2012). Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–21.
  • Wang L, Dong J, Ouyang W, et al. (2012). Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol Rep 27:719–26.
  • Moroz P, Jones SK, Gray BN. (2002). Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol 80:149–56.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–24.
  • Jones EL, Oleson JR, Prosnitz LR, et al. (2005). Randomized trial of hyperthermia and radiation for superficial tumors. JCO 23:3079–85.
  • Wang J. (2014). Simulation of magnetic nanoparticle hyperthermia in prostate tumors. Available from: https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/37090/WANG-THESIS-2014.pdf?sequence=1&isAllowed=y.
  • Giordano MA, Gutierrez G, Rinaldi C. (2010). Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Int J Hyperthermia 26:475–84.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol (Bethesda, MD: 1985) 1:34–93.
  • Bellizzi G, Bucci OM. (2010). On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia. Int J Hyperthermia 26:389–403.
  • Maier-Hauff K, Rothe R, Scholz R, et al. (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60.
  • Stigliano RV, Shubitidze F, Petryk AA, et al. (2013). Magnetic nanoparticle hyperthermia: predictive model for temperature distribution. Proc Spie Int Soc Opt Eng 8584:858410.
  • Krishnan S, Diagaradjane P, Cho SH. (2010). Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia 26:775–89.
  • Serlin Y, Shelef I, Knyazer B, et al. (2015). Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol 38:2–6.
  • Obermeier B, Daneman R, Ransohoff RM. (2013). Development, maintenance and disruption of the blood–brain barrier. Nat Med 19:1584–96.
  • van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. (2015). Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updates 19:1–12.
  • Qin DX, Zheng R, Tang J, et al. (1990). Influence of radiation on the blood–brain barrier and optimum time of chemotherapy. Int J Radiat Oncol Biol Phys 19:1507–10.
  • van Vulpen M, Kal HB, Taphoorn MJ, et al. (2002). Changes in blood–brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 9:683–8.
  • Bobo RH, Laske DW, Akbasak A, et al. (1994). Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–80.
  • Vogelbaum MA, Aghi MK. (2015). Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncology 17:ii3–8.
  • Debinski W, Tatter SB. (2009). Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother 9:1519–27.
  • Motion JPM, Huynh GH, Szoka FC, et al. (2011). Convection and retro-convection enhanced delivery: some theoretical considerations related to drug targeting. Pharm Res 28:472–9.
  • Lonser RR, Walbridge S, Garmestani K, et al. (2002). Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion. J Neurosurg 97:905–13.
  • Saito R, Sonoda Y, Kumabe T, et al. (2011). Regression of recurrent glioblastoma infiltrating the brainstem after convection-enhanced delivery of nimustine hydrochloride. J Neurosurg Pediatr 7:522–6.
  • Sandberg DI, Edgar MA, Souweidane MM. (2002). Convection-enhanced delivery into the rat brainstem. J Neurosurg 96:885–91.
  • Jahangiri A, Chin AT, Flanigan PM, et al. (2017). Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurgneurosurg 126:191–200.
  • Saito R, Krauze MT, Bringas JR, et al. (2005). Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196:381–9.
  • Bañobre-López M, Teijeiro A, Rivas J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18:397–400.
  • Pradhan P, Giri J, Banerjee R, et al. (2007). Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J Magnet Magnet Mater 311:282–7.
  • Wu W, Xiao XH, Zhang SF, et al. (2010). Synthesis and magnetic properties of maghemite (γ-Fe(2)O(3)) short-nanotubes. Nanoscale Res Lett 5:1474–9.
  • Kaluzova M, Bouras A, Machaidze R, et al. (2015). Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6:8788–806.
  • Platt S, Nduom E, Kent M, et al. (2012). Canine model of convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging. Clin Neurosurg 59:107–13.
  • Hadjipanayis CG, Machaidze R, Kaluzova M, et al. (2010). EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70:6303–12.
  • Bouras A, Kaluzova M, Hadjipanayis CG. (2015). Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J Neurooncol 124:13–22.
  • Markides H, Rotherham M, El Haj AJ. (2012). Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:1.
  • Mahmoudi M, Laurent S, Shokrgozar MA, et al. (2011). Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–76.
  • Laurent S, Burtea C, Thirifays C, et al. (2012). Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7:e29997.
  • Arbab AS, Yocum GT, Rad AM, et al. (2005). Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18:553–9.
  • Castaneda RT, Boddington S, Henning TD, et al. (2011). Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging. Pediatr Radiol 41:1384–92.
  • Muldoon LL, Sandor M, Pinkston KE, et al. (2005). Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57:785–96; discussion 785–96.
  • Wang Q, Shen M, Zhao T, et al. (2015). Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep 5:7774.
  • Bernd H, De Kerviler E, Gaillard S, et al. (2009). Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 44:336–42.
  • Shinkai M, Yanase M, Honda H, et al. (1996). Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Japan J Cancer Res: GANN 87:1179–83.
  • Ito A, Shinkai M, Honda H, et al. (2003). Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother: CII 52:80–8.
  • Meenach SA, Hilt JZ, Anderson KW. (2010). Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater 6:1039–46.
  • Xu H, Zong H, Ma C, et al. (2017). Evaluation of nano-magnetic fluid on malignant glioma cells. Oncol Lett 13:677–80.
  • Yanase M, Shinkai M, Honda H, et al. (1997). Intracellular hyperthermia for cancer using magnetite cationic liposomes: ex vivo study. Japan J Cancer Res: GANN 88:630–2.
  • Yanase M, Shinkai M, Honda H, et al. (1998). Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Japan J Cancer Res: GANN 89:463–9.
  • Yanase M, Shinkai M, Honda H, et al. (1998). Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Japan J Cancer Res: GANN 89:775–82.
  • Le B, Shinkai M, Kitade T, et al. (2001). Preparation of tumor-specific magnetoliposomes and their application for hyperthermia. J Chem Eng Japan/JCEJ 34:66–72.
  • Ohno T, Wakabayashi T, Takemura A, et al. (2002). Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study. J Neurooncol 56:233–9.
  • Rabias I, Tsitrouli D, Karakosta E, et al. (2010). Rapid magnetic heating treatment by highly charged maghemite nanoparticles on Wistar rats exocranial glioma tumors at microliter volume. Biomicrofluidics 4:024111.
  • Ohtake M, Umemura M, Sato I, et al. (2017). Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. Sci Rep 7:42783.
  • Jiang H, Wang C, Guo Z, et al. (2012). Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells. J Nanosci Nanotechnol 12:8276–81.
  • Sato I, Umemura M, Mitsudo K, et al. (2016). Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci Rep 6:24629.
  • Ito A, Shinkai M, Honda H, et al. (2001). Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–54.
  • Luethy JD, Fargnoli J, Park JS, et al. (1990). Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J Biol Chem 265:16521–6.
  • Nemkov V, Ruffini R, Goldstein R, et al. (2011). Magnetic field generating inductor for cancer hyperthermia research. Int J Comput Math Electr Electron Eng 30:1626--36.
  • Bonvin D, Alexander DTL, Millán A, et al. (2017). Tuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve MRI relaxivity and SAR. Nanomaterials 7:225.
  • Thiesen B, Jordan A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–74.
  • Bordelon DE, Goldstein RC, Nemkov VS, et al. (2012). Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn 48:47–52.
  • Gneveckow U, Jordan A, Scholz R, et al. (2004). Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444–51.
  • Wust P, Gneveckow U, Johannsen M, et al. (2006). Magnetic nanoparticles for interstitial thermotherapy – feasibility, tolerance and achieved temperatures. Int J Hyperthermia 22:673–85.
  • Johannsen M, Gneveckow U, Eckelt L, et al. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–47.
  • Johannsen M, Gneveckow U, Thiesen B, et al. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–61.
  • Fighting cancer more effectively and with fewer side effects. Available from: http://www.magforce.de/en/produkte/nanotherm-therapie.html.
  • Trefná HD, Crezee H, Schmidt M, et al. (2017). Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int J Hyperthermia 33:471–82.
  • Dobšíček Trefná H, Crezee J, Schmidt M, et al. (2017). Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices. Strahlenther Onkol 193:351–66.
  • Obaidat MI, Issa B, Haik Y. (2015). Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. (1984). Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng BME-31:70–5.
  • Hergt R, Dutz S. (2007). Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magnet Magnet Mater 311:187–92.
  • Ortega D, Pankhurst QA. (2013). Magnetic hyperthermia. Nanoscience: volume 1: nanostructures through chemistry. Vol. 1. Cambridge (UK): The Royal Society of Chemistry, 60–88.
  • van Landeghem FK, Maier-Hauff K, Jordan A, et al. (2009). Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–7.
  • Grauer O, Jaber M, Hess K, et al. (2016). RTHP-22. Inflammatory response after modified nanotherm and radiotherapy of recurrent glioblastoma. Neuro-Oncology 18:vi178–9.
  • Beinart R, Nazarian S. (2013). Effects of external electrical and magnetic fields on pacemakers and defibrillators: from engineering principles to clinical practice. Circulation 128:2799–809.
  • Liu H, Zhang J, Chen X, et al. (2016). Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale 8:7808–26.
  • Lagendijk JJW, Mooibroek J, Crezee J. (1993). Future developments in respect of thermal modeling, treatment planning, and treatment control for interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R, eds. Interstitial and intracavitary thermoradiotherapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 155–9.
  • Hunt JW, Lalonde R, Ginsberg H, et al. (1991). Rapid heating: critical theoretical assessment of thermal gradients found in hyperthermia treatments. Int J Hyperthermia 7:703–18.
  • Attaluri A, Ivkov R, Ma R, et al. Nanoparticle redistribution during magnetic nanoparticle hyperthermia: multi-physics porous medium model analyses. ASME International Mechanical Engineering Congress and Exposition, Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.