2,536
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications

&
Pages 301-311 | Received 18 May 2018, Accepted 12 Dec 2018, Published online: 07 Feb 2019

References

  • Hergt R, Dutz S, Müller R, et al. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006;18:S2919–S2934.
  • Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166:8–23.
  • Yu MK, Jeong YY, Park J, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed. 2008;47:5362–5365.
  • Li K, Shen M, Zheng L, et al. Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles. Nanoscale Res Lett. 2014;9:304.
  • Lim EWC, Feng R. Agglomeration of magnetic nanoparticles. J Chem Phys. 2012;136:124109
  • Grüttner C, Müller K, Teller J, et al. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperth. 2013;29:777–789.
  • Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm. 2000;26:459–463.
  • Kennedy DC, Orts-Gil G, Lai CH, et al. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J Nanobiotechnology. 2014;12:59.
  • Bojarova P, Kren V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci. 2016;4:1142–1160.
  • Muñoz-Bonilla A, Marcelo G, Casado C, et al. Preparation of glycopolymer-coated magnetite nanoparticles for hyperthermia treatment. J Polym Sci A Polym Chem. 2012;50:5087–5096.
  • Wadehra N, Gupta R, Prakash B, et al. Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction. Mater Res Express. 2017;4:5–7.
  • Kolhatkar AG, Jamison AC, Litvinov D, et al. Tuning the magnetic properties of nanoparticles. Int J Mol Sci. 2013;14:15977–16009.
  • Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2013;29:715–729.
  • Wan ZL, Wang LY, Yang XQ, et al. Controlled formation and stabilization of nanosized colloidal suspensions by combination of soy protein and biosurfactant stevioside as stabilizers. Food Hydrocoll. 2016;52:317–328.
  • Wan ZL, Wang LY, Wang JM, et al. Synergistic interfacial properties of soy protein-stevioside mixtures: relationship to emulsion stability. Food Hydrocoll. 2014;39:127–135.
  • Barwal I, Sood A, Sharma M, et al. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces. 2013;101:510–516.
  • Bunprajun T, Yimlamai T, Soodvilai S, et al. Stevioside enhances satellite cell activation by inhibiting of NF-κB signaling pathway in regenerating muscle after cardiotoxin-induced injury. J Agric Food Chem. 2012;60:2844–2851.
  • Yasukawa K, Kitanaka S, Seo S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol Pharm Bull. 2002;25:1488–1490.
  • Paul S, Sengupta S, Bandyopadhyay TK, et al. Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7. Nutr Cancer. 2012;64:1087–1094.
  • Ren HP, Yin XY, Yu HY, et al. Stevioside induced cytotoxicity in colon cancer cells via reactive oxygen species and mitogen-activated protein kinase signaling pathways-mediated apoptosis. Oncol Lett. 2017;13:2337–2343.
  • Teng X, Yang H. Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodispersive iron oxide nanoparticles. J Mater Chem. 2004;14:774–779.
  • Frey NA, Peng S, Cheng K, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38:2532–2542.
  • Mourdikoudis S, Liz-Marzan LM. Oleylamine in nanoparticle synthesis. Chem Mater. 2013;25:1465–1476.
  • Ge S, Shi X, Sun K, et al. A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C. 2009;113:13593–13599.
  • Oh Y, Lee N, Kang HW, et al. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4. Nanotechnology. 2016;27:115101.
  • Calero M, Chiappi M, Lazaro-Carrillo A, et al. Characterization of interaction of magnetic nanoparticles with breast cancer cells. J. Nanobiotechnology. 2015;13:16.
  • Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyper. 2013;29:739–751.
  • Yao X, Niu X, Ma K, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13:1–11.
  • Ramirez-Nuñez AL, Jimenez-Garcia LF, Goya GF, et al. In vitro magnetic hyperthermia using polyphenol-coated Fe3O4@γ- Fe2O3 nanoparticles from Cinnamomun verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. Nanotechnology. 2018;29:074001.
  • Wulandari IO, Mardila VT, Santjojo DJHD, et al. Preparation and characterization of chitosan-coated Fe3O4 nanoparticles using ex-situ co-precipitation method and tripolyphosphate/sulphate as dual crosslinkers. IOP Conf Ser Mater Sci Eng. 2018;299:012064.
  • Lv Y, Yang Y, Fang J, et al. Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Adv. 2015;5:76764–76771.
  • Kim DK, Mikhaylova M, Zhang Y, et al. Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater. 2003;15:1617–1627.
  • Issa B, Obaidat IM, Albiss BA, et al. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. IJMS. 2013;14:21266–21305.
  • Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41:2575–2589.
  • Hazra C, Kundu D, Chatterjee A, et al. Poly(methyl methacrylate) (core)-biosurfactant (shell) nanoparticles: size controlled sub-100 nm synthesis, characterization, antibacterial activity, cytotoxicity and sustained drug release behavior. Colloids Surf A Physicochem Eng Asp. 2014;449:96–113.
  • Smolensky ED, Park HYE, Zhou Y, et al. Scaling laws at the nano size: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J Mater Chem B. 2013;1:2818–2828.
  • Blanco-Gutierrez V, Saez-Puche R, Torralvo-Fernandez MJ. Superparamagnetism and interparticle interactions in ZnFe2O4 nanocrystals. J Mater Chem. 2012;22:2992–3003.
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett . 2006;6:662–668.
  • Kang B, Opatz T, Landfester K, et al. Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev. 2015;44:8301.
  • Salatin S, Khosroushahi AY. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21:1668–1686.
  • Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, et al. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater. 2014;364:72–79.
  • Theodorou IG, Ruenraroengsak P, Gow A, et al. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology. 2016;10:1351–1362.
  • Soares PIP, Lochte F, Echeverria C, et al. Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology. 2015;26:425704.
  • Hugounenq P, Levy M, Alloyeau D, et al. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C . 2012;116:15702–15712.
  • Wang W, Tang B, Benzhi J, et al. Size-controlled synthesis of water-dispersible superparamagnetic Fe3O4 nanoclusters and their magnetic responsiveness. RSC Adv. 2015;5:75292–75299.
  • Cheraghipour E, Javadpour S. Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy. Int J Hyperth. 2013;29:511–519.
  • Goya GF, Asín L, Ibarra MR. Cell death induced by ac magnetic fields and magnetic nanoparticles: current state and perspectives. Int J Hyperth. 2013;29:810–818.