7,077
Views
105
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 686-700 | Received 19 Nov 2018, Accepted 03 Jun 2019, Published online: 25 Jul 2019

References

  • Gas P. Essential facts on the history of hyperthermia and their connections with electromedicine. Prz Elektrotechniczny. 2011:87:37–40.
  • Hornback NB. Historical aspects of hyperthermia in cancer therapy. Radiol Clin North Am. 1989;27:481–488.
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24:467–474.
  • Sardari D, Verg N. Cancer treatment with hyperthermia. In: Ozdemir O, editor. Current cancer treatment – novel beyond conventional approaches. Rijeka, Croatia: InTech; 2011. p. 454–474.
  • Behrouzkia Z, Joveini Z, Keshavarzi B, et al. Hyperthermia: how can it be used? Oman Med J. 2016;31:89–97.
  • Gilchrist RK, Medal R, Shorey WD, et al. Selective inductive heating of lymph nodes. Ann Surg. 1957;146:596–606.
  • Kozissnik B, Dobson J. Biomedical applications of mesoscale magnetic particles. MRS Bull. 2013;38:927–932.
  • Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2013;29:715–729.
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36:R167–R181.
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys. 2011;109:1–17.
  • Luo S, Wang L, Ding W, et al. Clinical trials of magnetic induction hyperthermia for treatment of tumours. OA Cancer. 2014;2:2.
  • Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys. 2014;47:14.
  • Pankhurst QA, Thanh NKT, Jones SK, et al. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2009;42:1–15.
  • Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201:413–419.
  • Néel L. Influence des fluctuations thermiques a l’aimantation des particules ferromagnétiques. C R Acad Sci. 1949;228:664–668.
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–374.
  • Cruz MM, Ferreira LP, Alves AF, et al. Nanoparticles for magnetic hyperthermia. Nanostructures Cancer Ther. 2017;105:485–511.
  • Wang SY, Huang S, Borca-Tasciuc DA. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn. 2013;49:255–262.
  • Zhao X, Kim J, Cezar CA, et al. Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci U S A. 2011;108:67–72.
  • Lanier OL, Monsalve AG, McFetridge PS, et al. Magnetically triggered release of biologics. Int Mater Rev. 2019;64:63–90.
  • Fuller EG, Sun H, Dhavalikar RD, et al. Externally triggered heat and drug release from magnetically controlled nanocarriers. ACS Appl Polym Mater. 2019;1:211–220.
  • Monsalve A, Carolina A, Rinaldi C, et al. Remotely triggered activation of TGF- β with magnetic nanoparticles. IEEE Magn Lett. 2015;6:1–5.
  • Ceylan S, Coutable L, Wegner J, et al. Inductive heating with magnetic materials inside flow reactors. Chem Eur J. 2011;17:1884–1893.
  • Chen R, Romero G, Christiansen MG, et al. Wireless magnetothermal deep brain stimulation. Science. 2015;347:1477–1480.
  • Gaitas A, Kim G. Inductive heating kills cells that contribute to plaque: a proof-of-concept. PeerJ. 2015;3:e929.
  • Mathieu JB, Martel S. Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J Appl Phys. 2009;106:044904.
  • Wabler M, Zhu W, Hedayati M, et al. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia. 2014;30:192–200.
  • Angelakeris M, Li Z-A, Sakellari D, et al. Can commercial ferrofluids be exploited in AC magnetic hyperthermia treatment to address diverse biomedical aspects? EPJ Web Conf. 2014;75:08002–08004.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103:317–324.
  • Shinkai M, Yanase M, Suzuki M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater. 1999;194:176–184.
  • Sakellari D, Mathioudaki S, Kalpaxidou Z, et al. Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia. J Magn Magn Mater. 2015;380:360–364.
  • Kallumadil M, Tada M, Nakagawa T, et al. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater. 2009;321:1509–1513.
  • Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia. 2013;29:739–751.
  • Chou CK. Use of heating rate and specific absorption rate in the hyperthermia clinic. Int J Hyperthermia. 1990;6:367–370.
  • Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, et al. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett. 2011;6:383.
  • Yuan Y, Tasciuc D-A. Comparison between experimental and predicted specific absorption rate of functionalized iron oxide nanoparticle suspensions. J Magn Magn Mater. 2011;323:2463–2469.
  • Majeed J, Pradhan L, Ningthoujam RS, et al. Enhanced specific absorption rate in silanol functionalized Fe3O4 core–shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces. 2014;122:396–403.
  • Grüttner C, Müller K, Teller J, et al. Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J Magn Magn Mater. 2007;311:181–186.
  • Zhang L-Y, Gu H-C, Wang X-M. Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater. 2007;311:228–233.
  • Guardia P, Di Corato R, Lartigue L, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–3091.
  • Corrected slope SAR and ILP analysis programmes, written in Microsoft Excel and Matlab formats. [cited 2019 Jun 15]. Available from: www.resonantcircuits.com.
  • Ortega D, Pankhurst QA. Magnetic hyperthermia. In: O’Brien P, editor. Nanoscience: Volume 1: Nanostructures through Chemistry. Cambridge: Royal Society of Chemistry; 2013; 60–88.
  • ASTM E394-15. Standard test method for iron in trace quantities using the 1,10 phenanthroline method. West Conshohocken, PA: ASTM International; 2015.
  • De Jaeger N, Demeyere H, Finsy R, et al. Particle sizing by photon correlation spectroscopy part I: monodisperse latices: influence of scattering angle and concentration of dispersed material. Part Part Syst Charact. 1991;8:179–186.
  • NIST e-Handbook of Statistical Methods 1.3.6.6.9. Lognormal Distribution. [cited 2019 Jun 15]. Available from: http://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm.
  • Unni M, Uhl AM, Savliwala S, et al. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano. 2017;11:2284–2303.
  • Chantrell R, Popplewell J, Charles S. Measurements of particle size distribution parameters in ferrofluids. IEEE Trans Magn. 1978;14:975–977.
  • Ferguson RM, Minard KR, Khandhar AP, et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38:1619–1626.
  • Ma J, Chen K. Magnetic dead layer is not “magnetically dead” in hematite nanocubes. Phys Lett A. 2013;377:2216–2220.
  • Kaiser R, Miskolczy G. Magnetic properties of stable dispersions of subdomain magnetite particles. J Appl Phys. 1970;41:1064–1072.
  • Taylor BN, Kuyatt CE. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Tech Note. 1994;1297.
  • Ferregut C, Nazarian S, Vennalaganti K, et al. Fast error estimates for indirect measurements: applications to pavement engineering. Reliable Comput. 1996;2:219–228.
  • NIST e-Handbook of Statistical Methods 7.4.7.3 Bonferroni’s method. [cited 2019 Jun 15]. Available from: https://www.itl.nist.gov/div898/handbook/prc/section4/prc473.htm.
  • Samchenko Y, Korotych O, Kernosenko L, et al. Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids Surf A Physicochem Eng Asp. 2018;544:91–104.
  • Grüttner C, Müller K, Teller J, et al. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperthermia. 2013;29:777–789.
  • Bordelon DE, Cornejo C, Grüttner C, et al. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys. 2011;109:124904–124908.
  • Fortin JP, Wilhelm C, Servais J, et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–2635.
  • Hergt R, Hiergeist R, Hilger I, et al. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater. 2004;270:345–357.
  • Espinosa A, Kolosnjaj-Tabi J, Abou-Hassan A, et al. Magnetic (hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv Funct Mater. 2018;28:1803660.
  • Huang S, Wang SY, Gupta A, et al. On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol. 2012;23:1–6.
  • Soetaert F, Kandala SK, Bakuzis A, et al. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci Rep. 2017;7:1–15.
  • Attaluri A, Nusbaum C, Wabler M, et al. Calibration of a quasi-adiabatic magneto-thermal calorimeter used to characterize magnetic nanoparticle heating. J Nanotechnol Eng Med. 2013;4:011006–011008.
  • Coïsson M, Barrera G, Celegato F, et al. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions. J Magn Magn Mater. 2016;451:2–7.
  • Soto-Aquino D, Rinaldi C. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields. J Magn Magn Mater. 2015;393:46–55.
  • Martinez-Boubeta C, Simeonidis K, Makridis A, et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep. 2013;3:1652.
  • Dennis CL, Krycka KL, Borchers JA, et al. Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field. Adv Funct Mater. 2015;25:4300–4311.
  • Issa B, Obaidat IM, Albiss BA, et al. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. IJMS. 2013;14:21266–21305.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng. 1984;31:70–75.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia. 2013;29:706–714.
  • Carrião MS, Aquino VRR, Landi GT, et al. Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: a field dependence study. J Appl Phys. 2017;121:173901–173913.
  • Wust P, Gneveckow U, Johannsen M, et al. Magnetic nanoparticles for interstitial thermotherapy − feasibility, tolerance and achieved temperatures. Int J Hyperthermia. 2006;22:673–685.
  • Dennis CL, Jackson AJ, Borchers JA, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20:395103–395115.
  • Dutz S, Kettering M, Hilger I, et al. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology. 2011;22:265102–265101.
  • Giustini AJ, Ivkov R, Hoopes PJ. Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology. 2011;22:345101–345101.