1,025
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Temperature mapping of exothermic in situ chemistry: imaging of thermoembolization via MR

ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 729-737 | Received 01 Dec 2018, Accepted 17 Jun 2019, Published online: 30 Jul 2019

References

  • Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017;24:107327481772924.
  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians. 2015;65:87–108.
  • Cabrera R. Systemic targeted therapy beyond sorafenib. Clin Liver Dis. 2012;1:212–216.
  • Kim DW, Talati C, Kim R. Hepatocellular carcinoma (HCC): beyond sorafenib—chemotherapy. J Gastrointest Oncol. 2017;8:256–265.
  • Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–1255.
  • Mokdad AA, Singal AG, Yopp AC. Advances in local and systemic therapies for hepatocellular cancer. Curr Oncol Rep. 2016;18:9.
  • Lencioni R, de Baere T, Soulen MC, et al. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. Hepatology. 2016;64:106–116.
  • Soydal C, Arslan MF, Kucuk ON, et al. Comparison of survival, safety, and efficacy after transarterial chemoembolization and radioembolization of Barcelona Clinic Liver Cancer stage B-C hepatocellular cancer patients. Nuclear Med Commun. 2016;37:646–649.
  • Marin HL, Furth EE, Olthoff K, et al. Histopathologic outcome of neoadjuvant image-guided therapy of hepatocellular carcinoma. J Gastroint Liver Dis. 2009;18:169–176.
  • Ahmed M, Kumar G, Moussa M, et al. Hepatic radiofrequency ablation-induced stimulation of distant tumor growth is suppressed by c-Met inhibition. Radiology. 2015;279:150080.
  • Moussa M, Goldberg SN, Kumar G, et al. Radiofrequency ablation–induced upregulation of hypoxia-inducible factor-1α can be suppressed with adjuvant bortezomib or liposomal chemotherapy. J Vasc Intervent Radiol. 2014;25:1972–1982.
  • Lee H-j, Kim JW, Hur YH, et al. Combined therapy of transcatheter arterial chemoembolization and radiofrequency ablation versus surgical resection for single 2–3 cm hepatocellular carcinoma: a propensity-score matching analysis. J Vasc Intervent Radiol. 2017;28:1240–1247.e3.
  • Yang W-Z, Jiang N, Huang N, et al. Combined therapy with transcatheter arterial chemoembolization and percutaneous microwave coagulation for small hepatocellular carcinoma. World J Gastroenterol. 2009;15:748–752.
  • Peng Z-W, Zhang Y-J, Chen M-S, et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J Clin Oncol. 2013;31:426–432.
  • Cressman ENK, Guo C. Feasibility study using tissue as reagent for cancer therapy: endovascular ablation via thermochemistry. Converg Sci Phys Oncol. 2018;4:025003.
  • Cressman ENK, Guo C. First in vivo test of thermoembolization: turning tissue against itself using transcatheter chemistry in a porcine model. Cardiovasc Intervent Radiol. 2018;41:1611–1617.
  • Cressman ENK, Guo C, Karbasian N. Image-guided chemistry altering biology: an in vivo study of thermoembolization. Plos One. 2018;13:e0200471.
  • Dondelinger RF, Ghysels MP, Brisbois D, et al. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur Radiol. 1998;8:1254–1273.
  • Evan AP, Connors BA, Lingeman JE, et al. Branching patterns of the renal artery of the pig. Anat Rec. 1996;246:217–223.
  • Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27:376–390.
  • Wishart D, Bigam C, Yao J, et al. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol Nmr. 1995;6:135–140.
  • Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814–823.
  • Taylor BA, Hwang K-P, Elliott AM, et al. Dynamic chemical shift imaging for image-guided thermal therapy: analysis of feasibility and potential. Med Phys. 2008;35:793–803.
  • Taylor BA, Hwang K-P, Hazle JD, et al. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition. Med Phys. 2009;36:753–764.
  • Candy JV. Model-based signal processing. Hoboken, NJ: IEEE Press; 2006. pp. 677.
  • Steiglitz K, McBride L. A technique for the identification of linear systems. IEEE Trans Automat Contr. 1965;10:461–464.
  • Stoica P, Soderstrom T. The Steiglitz-McBride identification algorithm revisited–Convergence analysis and accuracy aspects. IEEE Trans Automat Contr. 1981;26:712–717.
  • MacLellan CJ, Fuentes D, Prabhu S, et al. A methodology for thermal dose model parameter development using perioperative MRI. Int J Hyperthermia. 2018;34:687–696.
  • Salomir R, Viallon M, Kickhefel A, et al. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase. IEEE Trans Med Imaging. 2012;31:287–301.
  • Kankotia S, Stacpoole PW. Dichloroacetate and cancer: New home for an orphan drug? Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2014;1846:617–629.
  • Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99:989–994.
  • Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 1994;10:457–483.
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, et al. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19:267–294.
  • Pearce JA. Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia. 2013;29:262–280.
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.
  • Byron B, Hendrix M, Wharton PS. The effect of variation of pH upon the process of heat denaturation of egg albumin. J Biol Chem. 1934;105:633–642.
  • Ho QT, Murphy KM, Drapala KP, et al. Effect of pH and heat treatment on viscosity and heat coagulation properties of milk protein concentrate. Int Dairy J. 2018;85:219–224.
  • Raaphorst GP, Azzam EI. A comparison of the fixation of X-ray or heat damage in chinese hamster cells exposed to anisotonic salt solutions. Int J Radiat Biol Relat Stud Phys Chem Med. 1981;39:689–695.
  • Rieke V, Instrella R, Rosenberg J, et al. Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. J Magn Reson Imaging. 2013;38:1462–1471.
  • Andreychenko A, Denis de Senneville B, Navest RJM, et al. Respiratory motion model based on the noise covariance matrix of a receive array. Magn Reson Med. 2018;79:1730–1735.
  • Bour P, Ozenne V, Marquet F, et al. Real-time 3D ultrasound based motion tracking for the treatment of mobile organs with MR-guided high-intensity focused ultrasound. Int J Hyperthermia. 2018;34:1225–1235.
  • Diodato A, Cafarelli A, Schiappacasse A, et al. Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs. Phys Med Biol. 2018;63:035017.
  • Fuentes D, Yung J, Hazle JD, et al. Kalman filtered MR temperature imaging for laser induced thermal therapies. IEEE Trans Med Imaging. 2012;31:984–994.
  • Roujol S, de Senneville BD, Hey S, et al. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions. IEEE Trans Med Imaging. 2012;31:533–542.