930
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Aberration correction in abdominal histotripsy

ORCID Icon & ORCID Icon
Article: 2266594 | Received 02 Aug 2023, Accepted 28 Sep 2023, Published online: 09 Oct 2023

References

  • Khokhlova VA, Fowlkes JB, Roberts WW, et al. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia. 2015;31(2):145–162. doi: 10.3109/02656736.2015.1007538.
  • Maxwell AD, Cain CA, Hall TL, et al. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med Biol. 2013;39(3):449–465. doi: 10.1016/j.ultrasmedbio.2012.09.004.
  • Maxwell AD, Wang TY, Cain CA, et al. Cavitation clouds created by shock scattering from bubbles during histotripsy. J Acoust Soc Am. 2011;30(4):1888–1898. doi: 10.1121/1.3625239.
  • Khokhlova TD, Canney MS, Khokhlova VA, et al. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling. J Acoust Soc Am. 2011;130(5):3498–3510. doi: 10.1121/1.3626152.
  • Pahk KJ, Gélat P, Kim H, et al. Bubble dynamics in boiling histotripsy. Ultrasound Med Biol. 2018;44(12):2673–2696. doi: 10.1016/j.ultrasmedbio.2018.07.025.
  • Lu N, Gupta D, Daou BJ, et al. Transcranial magnetic resonance-guided histotripsy for brain surgery: pre-clinical investigation. Ultrasound Med Biol. 2022;48(1):98–110. doi: 10.1016/j.ultrasmedbio.2021.09.008.
  • Sukovich JR, Cain CA, Pandey AS, et al. In vivo histotripsy brain treatment. J Neurosurg. 2018;131(4):1–8. doi: 10.3171/2018.4.JNS172652.
  • Hendricks-Wenger A, Weber P, Simon A, et al. Histotripsy for the treatment of cholangiocarcinoma liver tumors: in vivo feasibility and ex vivo dosimetry study. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2953–2964. doi: 10.1109/TUFFC.2021.3073563.
  • Schade GR, Wang Y-N, D'Andrea S, et al. Boiling histotripsy ablation of renal cell carcinoma in the eker rat promotes a systemic inflammatory response. Ultrasound Med Biol. 2019;45(1):137–147. doi: 10.1016/j.ultrasmedbio.2018.09.006.
  • Xu Z, Owens G, Gordon D, et al. Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation. 2010;121(6):742–749. doi: 10.1161/CIRCULATIONAHA.109.889071.
  • Vlaisavljevich E, Owens G, Lundt J, et al. Non-Invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model. Ultrasound Med Biol. 2017;43(6):1237–1251. doi: 10.1016/j.ultrasmedbio.2017.01.016.
  • Owens GE, Miller RM, Owens ST, et al. Intermediate-term effects of intracardiac communications created noninvasively by therapeutic ultrasound (histotripsy) in a porcine model. Pediatr Cardiol. 2012;33(1):83–89. doi: 10.1007/s00246-011-0094-6.
  • Heo J, Joung C, Pahk K, et al. Investigation of the long-term healing response of the liver to boiling histotripsy treatment in vivo. Sci Rep. 2022;12(1):14462. doi: 10.1038/s41598-022-18544-7.
  • Khokhlova TD, Schade GR, Wang YN, et al. Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney. Sci Rep. 2019;9(1):20176. doi: 10.1038/s41598-019-56658-7.
  • Vlaisavljevich E, Kim Y, Allen S, et al. Image-Guided Non-Invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol. 2013;39(8):1398–1409. doi: 10.1016/j.ultrasmedbio.2013.02.005.
  • Roberts WW, Hall TL, Ives K, et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol. 2006;175(2):734–738. doi: 10.1016/S0022-5347(05)00141-2.
  • Hall TL, Kieran K, Ives K, et al. Histotripsy of rabbit renal tissue in vivo: temporal histologic trends. J Endourol. 2007;21(10):1159–1166. doi: 10.1089/end.2007.9915.
  • Schade GR, Maxwell AD, Khokhlova T, et al. Boiling histotripsy of the kidney: preliminary studies and predictors of treatment effectiveness. J Acoust Soc Am. 2014;136(4_Supplement):2251–2251. doi: 10.1121/1.4900125.
  • Dubinsky TJ, Khokhlova TD, Khokhlova V, et al. Histotripsy: the next generation of high-intensity focused ultrasound for focal prostate cancer therapy. J Ultrasound Med. 2020;39(6):1057–1067. doi: 10.1002/jum.15191.
  • Hall TL, Hempel CR, Wojno K, et al. Histotripsy of the prostate: dose effects in a chronic canine model. Urology. 2009;74(4):932–937. doi: 10.1016/j.urology.2009.03.049.
  • Schuster TG, Wei JT, Hendlin K, et al. Histotripsy treatment of benign prostatic enlargement using the vortx Rx system: initial human safety and efficacy outcomes. Urology. 2018;114:184–187. doi: 10.1016/j.urology.2017.12.033.
  • Vidal-Jove J, Serres X, Vlaisavljevich E, et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperthermia. 2022;39(1):1115–1123. doi: 10.1080/02656736.2022.2112309.
  • O'Donnell M, Flax SW. Phase aberration measurements in medical ultrasound: human studies. Ultrason Imaging. 1988;10(1):1–11. doi: 10.1177/016173468801000101.
  • Mallart R, Fink M. Sound speed fluctuations in medical ultrasound imaging comparison between different correction algorithms. In: Ermert H, Harjes HP, editors. Acoustical imaging. [Internet]. Boston, MA: Springer US; 1992. p. 213–218. doi: 10.1007/978-1-4615-3370-2_34.
  • Sumino Y, Waag RC. Measurements of ultrasonic pulse arrival time differences produced by abdominal wall specimens. J Acoust Soc Am. 1991;90(6):2924–2930. doi: 10.1121/1.401766.
  • Mast TD, Hinkelman LM, Orr MJ, et al. Simulation of ultrasonic pulse propagation through the abdominal wall. J Acoust Soc Am. 1997;102(2 Pt 1):1177–1190. doi: 10.1121/1.421015.
  • Thomas JL, Fink MA. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans Ultrason Ferroelect Freq Contr. 1996;3(6):1122–1129. doi: 10.1109/58.542055.
  • Kyriakou A, Neufeld E, Werner B, et al. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study. J Ther Ultrasound. 2015;3(1):11. doi: 10.1186/s40349-015-0032-9.
  • Kaye EA, Chen J, Pauly KB. Rapid MR-ARFI method for focal spot localization during focused ultrasound therapy. Magn Reson Med. 2011;65(3):738–743. doi: 10.1002/mrm.22662.
  • Peek AT, Hunter C, Kreider W, et al. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications. J Acoust Soc Am. 2020;148(6):3569–3580. doi: 10.1121/10.0002877.
  • Zhen-Bo L, Ting-Bo F, Dong Z, et al. Influence of the abdominal wall on the nonlinear propagation of focused therapeutic ultrasound. Chinese Phys B. 2009;18(11):4932–4937. doi: 10.1088/1674-1056/18/11/052.
  • Lin K, Kim Y, Maxwell AD, et al. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):251–265. doi: 10.1109/TUFFC.2014.6722611.
  • Pahk KJ, de Andrade MO, Kim H, et al. The effects of the size of a boiling bubble on lesion production in boiling histotripsy. J Phys: conf Ser. 2019;1184(1):012007. doi: 10.1088/1742-6596/1184/1/012007.
  • Li D, Shen G, Bai J, et al. Focus shift and phase correction in soft tissues during focused ultrasound surgery. IEEE Trans Biomed Eng. 2011;58(6):1621–1628.
  • Wang H, Ebbini ES, O'Donnell M, et al. Phase aberration correction and motion compensation for ultrasonic hyperthermia phased arrays: experimental results. IEEE Trans Ultrason, Ferroelect, Freq Contr. 1994;41(1):34–43. doi: 10.1109/58.265818.
  • Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol. 2016;61(17):R206–R248. doi: 10.1088/0031-9155/61/17/R206.
  • Pernot M, Aubry JF, Tanter M, et al. High power phased array prototype for clinical high intensity focused ultrasound: applications to transcostal and transcranial therapy. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007. p. 234–7. doi: 10.1109/IEMBS.2007.4352266.
  • Tanter M, Pernot M, Aubry JF, et al. Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia. 2007;23(2):141–151. doi: 10.1080/02656730701209996.
  • Kyriakou A, Neufeld E, Werner B, et al. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperthermia. 2014;30(1):36–46. doi: 10.3109/02656736.2013.861519.
  • de Senneville BD, Moonen C, Ries M. MRI-Guided HIFU methods for the ablation of liver and renal cancers. In: Escoffre JM, Bouakaz A, editors. Therapeutic ultrasound. [Internet]. Cham: Springer International Publishing; 2016 p. 43–63.
  • Kim Y, Wang TY, Xu Z, et al. Lesion generation through ribs using histotripsy therapy without aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(11):2334–2343. doi: 10.1109/TUFFC.2011.2091.
  • Kim Y, Vlaisavljevich E, Owens GE, et al. In vivotranscostal histotripsy therapy without aberration correction. Phys Med Biol. 2014;59(11):2553–2568. doi: 10.1088/0031-9155/59/11/2553.
  • Sukovich JR, Xu Z, Kim Y, et al. Targeted lesion generation through the skull without aberration correction using histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(5):671–682. doi: 10.1109/TUFFC.2016.2531504.
  • Gao J, Cochran S, Huang Z. Ultrasound beam distortion and pressure reduction in transcostal focused ultrasound surgery. Appl Acoust. 2014;76:337–345. doi: 10.1016/j.apacoust.2013.06.003.
  • Li JL, Liu XZ, Zhang D, et al. Influence of ribs on the nonlinear sound field of therapeutic ultrasound. Ultrasound Med Biol. 2007;33(9):1413–1420. doi: 10.1016/j.ultrasmedbio.2007.05.001.
  • Khokhlova VA, Bobkova SM, Gavrilov LR. Focus splitting associated with propagation of focused ultrasound through the rib cage. Acoust Phys. 2010;56(5):665–674. doi: 10.1134/S106377101005012X.
  • Lin J, Liu X, Gong X, et al. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures. J Acoust Soc Am. 2013;134(2):1702–1714. doi: 10.1121/1.4812897.
  • Lorton O, Guillemin PC, M'Rad Y, et al. A novel concept of a phased-array HIFU transducer optimized for MR-guided hepatic ablation: embodiment and first in-vivo studies. Front Oncol. 2022;12:899440. doi: 10.3389/fonc.2022.899440.
  • Bobkova S, Gavrilov L, Khokhlova V, et al. Focusing of High-Intensity ultrasound through the rib cage using a therapeutic random phased array. Ultrasound Med Biol. 2010;36(6):888–906. doi: 10.1016/j.ultrasmedbio.2010.03.007.
  • Bardsley BG, Christensen DA. Beam patterns from pulsed ultrasonic transducers using linear systems theory. J Acoust Soc Am. 1981;69(1):25–30. doi: 10.1121/1.385346.
  • Vlaisavljevich E, Maxwell A, Warnez M, et al. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):341–352. doi: 10.1109/TUFFC.2014.6722618.
  • Duck FA. Chapter 4 - Acoustic properties of tissue at ultrasonic frequencies. In Duck FA, editor. Physical properties of tissues [Internet]. London: Academic Press; 1990. p. 73–135.
  • Xu Z, Hall TL, Vlaisavljevich E, et al. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561–575. doi: 10.1080/02656736.2021.1905189.
  • Liu Z, Guo X, Tu J, et al. Variations in temperature distribution and tissue lesion formation induced by tissue inhomogeneity for therapeutic ultrasound. Ultrasound Med Biol. 2014;40(8):1857–1868. doi: 10.1016/j.ultrasmedbio.2014.02.004.
  • Li K, Chen Y, Xu Y, et al. Tilting high-intensity focused ultrasound phased array to augment the focal steering range for treatment of uterine fibroids. Appl Acoust. 2020;166:107342. doi: 10.1016/j.apacoust.2020.107342.
  • Farrer AI, Almquist S, Dillon CR, et al. Phase aberration simulation study of MRgFUS breast treatments. Med Phys. 2016;43(3):1374–1384. doi: 10.1118/1.4941013.
  • Narumi R, Matsuki K, Azuma T, et al. Numerical estimation of HIFU focal error for breast cancer treatment. In 2013 IEEE International Ultrasonics Symposium (IUS). 2013. p. 926–9. doi: 10.1109/ULTSYM.2013.0238.
  • Grisey A, Heidmann M, Letort V, et al. Influence of skin and subcutaneous tissue on High-Intensity focused ultrasound beam: experimental quantification and numerical modeling. Ultrasound Med Biol. 2016;42(10):2457–2465. doi: 10.1016/j.ultrasmedbio.2016.06.013.
  • Okita K, Narumi R, Azuma T, et al. Effects of breast structure on high-intensity focused ultrasound focal error. J Ther Ultrasound. 2018;6(1):4. doi: 10.1186/s40349-018-0111-9.
  • Ritchie R, Collin J, Coussios C, et al. Attenuation and De-focusing during High-Intensity focused ultrasound therapy through peri-nephric fat. Ultrasound Med Biol. 2013;39(10):1785–1793. doi: 10.1016/j.ultrasmedbio.2013.04.010.
  • Suomi V, Jaros J, Treeby B, et al. Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE; 2016 p. 5648–51. doi: 10.1109/EMBC.2016.7592008.
  • Ritchie RW, Leslie T, Phillips R, et al. Extracorporeal high intensity focused ultrasound for renal tumours: a 3‐year follow‐up. BJU Int. 2010;106(7):1004–1009. doi: 10.1111/j.1464-410X.2010.09289.x.
  • Abbas AM, Coussios CC, Cleveland OR. Patient specific simulation of HIFU kidney tumour ablation In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. p. 5709–5712.
  • Mougenot C, Tillander M, Koskela J, et al. High intensity focused ultrasound with large aperture transducers: a MRI based focal point correction for tissue heterogeneity. Med Phys. 2012;39(4):1936–1945. doi: 10.1118/1.3693051.
  • Vlaisavljevich E, Gerhardson T, Hall T, et al. Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. Phys Med Biol. 2017;62(4):1269–1290. doi: 10.1088/1361-6560/aa54c7.
  • Khokhlova T, Rosnitskiy P, Hunter C, et al. Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion. J Acoust Soc Am. 2018;144(3):1160–1169. doi: 10.1121/1.5052260.
  • Yeats E, Gupta D, Xu Z, et al. Effects of phase aberration on transabdominal focusing for a large aperture, low f-number histotripsy transducer. Phys Med Biol. 2022;67(15):155004. doi: 10.1088/1361-6560/ac7d90.
  • Fan X, Hynynen K. The effect of wave reflection and refraction at soft tissue interfaces during ultrasound hyperthermia treatments. J Acoust Soc Am. 1992;91(3):1727–1736. doi: 10.1121/1.402452.
  • Fan X, Hynynen K. The effects of curved tissue layers on the power deposition patterns of therapeutic ultrasound beams. Med Phys. 1994;21(1):25–34. doi: 10.1118/1.597250.
  • Liu HL, McDannold N, Hynynen K. Focal beam distortion and treatment planning in abdominal focused ultrasound surgery: abdominal focused ultrasound surgery. Med Phys. 2005;32(5):1270–1280. doi: 10.1118/1.1895525.
  • Yin X, Hynynen K. A numerical study of transcranial focused ultrasound beam propagation at low frequency. Phys Med Biol. 2005;50(8):1821–1836. doi: 10.1088/0031-9155/50/8/013.
  • White PJ, von Pattenberg P, Clement GT. A nonlinear method for high-intensity focused ultrasound (HIFU) aberration reduction. In: 2008 IEEE Ultrasonics Symposium. 2008. p. 2059–2061.
  • Lin KW, Duryea AP, Kim Y, et al. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):325–340. doi: 10.1109/TUFFC.2014.6722617.
  • Christopher T. Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):125–139. doi: 10.1109/58.585208.
  • Gélat P, ter Haar G, Saffari N. A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Phys Med Biol. 2014;59(12):3139–3171. doi: 10.1088/0031-9155/59/12/3139.
  • Quesson B, Merle M, Köhler MO, et al. A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver. Med Phys. 2010;37(6):2533–2540. doi: 10.1118/1.3413996.
  • Cochard E, Prada C, Aubry JF, et al. Ultrasonic focusing through the ribs using the DORT method. Med Phys. 2009;36(8):3495–3503. doi: 10.1118/1.3159755.
  • Ballard JR, Casper AJ, Wan Y, et al. Adaptive transthoracic refocusing of Dual-Mode ultrasound arrays. IEEE Trans Biomed Eng. 2010;57(1):93–102. doi: 10.1109/TBME.2009.2028150.
  • Liu HL, Chang H, Chen WS, et al. Feasibility of transrib focused ultrasound thermal ablation for liver tumors using a spherically curved 2D array: a numerical study. Med Phys. 2007;34(9):3436–3448. doi: 10.1118/1.2759888.
  • Aubry JF, Pernot M, Marquet F, et al. Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Phys Med Biol. 2008;53(11):2937–2951. doi: 10.1088/0031-9155/53/11/012.
  • Botros YY, Ebbini ES, Volakis JL. Two-step hybrid virtual array ray (VAR) technique for focusing through the rib cage. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(4):989–1000. doi: 10.1109/58.710577.
  • Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol. 2002;47(8):1219–1236. doi: 10.1088/0031-9155/47/8/301.
  • Jones RM, Hynynen K. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging. Phys Med Biol. 2016;61(1):23–36. doi: 10.1088/0031-9155/61/1/23.
  • Pinton GF, Aubry JF, Tanter M. Direct phase projection and transcranial focusing of ultrasound for brain therapy. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(6):1149–1159. doi: 10.1109/tuffc.2012.2305.
  • Aubry JF, Tanter M, Pernot M, et al. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am. 2003;113(1):84–93. doi: 10.1121/1.1529663.
  • Marquet F, Pernot M, Aubry JF, et al. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation andin vitroresults. Phys Med Biol. 2009;54(9):2597–2613. doi: 10.1088/0031-9155/54/9/001.
  • Almquist S, Parker DL, Christensen DA. Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies. J Ther Ultrasound. 2016;Dec 84(1):30. doi: 10.1186/s40349-016-0074-7.
  • Jing Y, Meral FC, Clement GT. Time-reversal transcranial ultrasound beam focusing using a k-space method. Phys Med Biol. 2012;57(4):901–917. doi: 10.1088/0031-9155/57/4/901.
  • Miller GW, Eames M, Snell J, et al. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: in vitro comparison on human calvaria. Med Phys. 2015;42(5):2223–2233. doi: 10.1118/1.4916656.
  • Lu N, Hall TL, Sukovich JR, et al. Two-step aberration correction: application to transcranial histotripsy. Phys Med Biol. 2022;67(12):125009. doi: 10.1088/1361-6560/ac72ed.
  • Haqshenas SR, Gélat P, van ’t Wout E, et al. A fast full-wave solver for calculating ultrasound propagation in the body. Ultrasonics. 2021;110:106240. doi: 10.1016/j.ultras.2020.106240.
  • McDannold N, Tempany CM, Fennessy FM, et al. Uterine leiomyomas: MR imaging–based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology. 2006;240(1):263–272. doi: 10.1148/radiol.2401050717.
  • deSouza NM, Gedroyc W, Rivens I, et al. Tissue specific considerations in implementing high intensity focussed ultrasound under magnetic resonance imaging guidance. Front Oncol. 2022;12:1037959. doi: 10.3389/fonc.2022.1037959.
  • Hyvärinen M, Huang Y, David E, et al. Comparison of computer simulations and clinical treatment results of magnetic resonance-guided focused ultrasound surgery (MRgFUS) of uterine fibroids. Med Phys. 2022;49(4):2101–2119. doi: 10.1002/mp.15263.
  • Payne A, Merrill R, Minalga E, et al. A Breast-Specific MR guided focused ultrasound platform and treatment protocol: first-in-human technical evaluation. IEEE Trans Biomed Eng. 2021;Mar68(3):893–904. doi: 10.1109/TBME.2020.3016206.
  • Deckers R, Merckel LG, Denis De Senneville B, et al. Performance analysis of a dedicated breast MR-HIFU system for tumor ablation in breast cancer patients. Phys Med Biol. 2015;60(14):5527–5542. doi: 10.1088/0031-9155/60/14/5527.
  • Dillon CR, Farrer A, McLean H, et al. Experimental assessment of phase aberration correction for breast MRgFUS therapy. Int J Hyperthermia. 2018;34(6):731–743. doi: 10.1080/02656736.2017.1422029.
  • Wagner MG, Periyasamy S, Kutlu AZ, et al. An X-ray C-arm guided automatic targeting system for histotripsy. IEEE Trans Biomed Eng. 2023;70(2):592–602. doi: 10.1109/TBME.2022.3198600.
  • Weston AD, Korfiatis P, Kline TL, et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology. 2019;290(3):669–679. doi: 10.1148/radiol.2018181432.
  • Lenchik L, Heacock L, Weaver AA, et al. Automated segmentation of tissues using CT and MRI: a systematic review. Acad Radiol. 2019;26(12):1695–1706. doi: 10.1016/j.acra.2019.07.006.
  • Chen Y, Ruan D, Xiao J, et al. Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks. Med Phys. 2020;47(10):4971–4982. doi: 10.1002/mp.14429.
  • Chowdhary CL, Acharjya DP. Segmentation and feature extraction in medical imaging: a systematic review. Int Conf Comput Intell Data Sci. 2020;167:26–36. doi: 10.1016/j.procs.2020.03.179.
  • Wang T, Jing Y. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study. Phys Med Biol. 2013;58(19):6663–6681. doi: 10.1088/0031-9155/58/19/6663.
  • Leung SA, Moore D, Webb TD, et al. Transcranial focused ultrasound phase correction using the hybrid angular spectrum method. Sci Rep. 2021;11(1):6532. doi: 10.1038/s41598-021-85535-5.
  • Bancel T, Houdouin A, Annic P, et al. Comparison between ray-tracing and full-wave simulation for transcranial ultrasound focusing on a clinical system using the transfer matrix formalism. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(7):2554–2565. doi: 10.1109/TUFFC.2021.3063055.
  • Yasuda J, Yoshikawa H, Tanaka H. Phase aberration correction for focused ultrasound transmission by refraction compensation. Jpn J Appl Phys. 2019;58(SG):SGGE22. doi: 10.7567/1347-4065/ab19aa.
  • van Hal VHJ, Muller JW, van Sambeek MRHM, et al. An aberration correction approach for single and dual aperture ultrasound imaging of the abdomen. Ultrasonics. 2023;131:106936. doi: 10.1016/j.ultras.2023.106936.
  • Qu X, Azuma T, Lin H, et al. Phase aberration correction by multi-stencils fast marching method using sound speed image in ultrasound computed tomography. In 2016. p. 979018. doi: 10.1117/12.2216689.
  • Thomas GPL, Khokhlova TD, Khokhlova VA. Partial respiratory motion compensation for abdominal extracorporeal boiling histotripsy treatments with a robotic arm. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2861–2870. doi: 10.1109/TUFFC.2021.3075938.
  • Liu D, Waag RC. Time‐shift compensation of ultrasonic pulse focus degradation using least‐mean‐square error estimates of arrival time. J Acoust Soc Am. 1994;95(1):542–555. doi: 10.1121/1.408348.
  • Rachlin D. Direct estimation of aberrating delays in pulse‐echo imaging systems. J Acoust Soc Am. 1990;88(1):191–198. doi: 10.1121/1.399940.
  • Jaeger M, Robinson E, Akarçay HG, et al. Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering. Phys Med Biol. 2015;60(11):4497–4515. doi: 10.1088/0031-9155/60/11/4497.
  • Ali R, Dahl JJ. Distributed phase aberration correction techniques based on local sound speed estimates. In 2018 IEEE International Ultrasonics Symposium (IUS) [Internet]. Kobe: IEEE; 2018 [cited 2022 Feb 21]. p. 1–4. Available from: https://ieeexplore.ieee.org/document/8580139/. doi: 10.1109/ULTSYM.2018.8580139.
  • Dong Z, Zheng H, Zhu Q, et al. Focus prediction of high-intensity focused ultrasound (HIFU) in biological tissues based on magnetic resonance images. Appl Acoust. 2022;197:108927. doi: 10.1016/j.apacoust.2022.108927.
  • Hinkelman LM, Mast TD, Metlay LA, et al. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part I. Measurements. J Acoust Soc Am. 1998;104(6):3635–3649. doi: 10.1121/1.423946.
  • Mast TD, Hinkelman LM, Orr MJ, et al. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations. J Acoust Soc Am. 1998;104(6):3651–3664. doi: 10.1121/1.423947.
  • Goss SA, Johnston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am. 1978;64(2):423–457. doi: 10.1121/1.382016.
  • Oh JH, Choi SP, Wee JH, et al. Inter-scanner variability in hounsfield unit measured by CT of the brain and effect on gray-to-white matter ratio. Am J Emerg Med. 2019;37(4):680–684. doi: 10.1016/j.ajem.2018.07.016.
  • Flax SW, O'Donnell M. Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles. IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(6):758–767. doi: 10.1109/58.9333.
  • Nock L, Trahey GE, Smith SW. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J Acoust Soc Am. 1989;85(5):1819–1833. doi: 10.1121/1.397889.
  • Fink M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(5):555–566. doi: 10.1109/58.156174.
  • Li Y, Robinson D, Carpenter D. Phase aberration correction using near-field signal redundancy. II. Experimental results. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):372–379. doi: 10.1109/58.585121.
  • Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med. 2004;52(1):100–107. doi: 10.1002/mrm.20118.
  • Daum DR, Smith NB, King R, et al. In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array. Ultrasound Med Biol. 1999;25(7):1087–1098. doi: 10.1016/s0301-5629(99)00053-8.
  • McGough RJ, Kessler ML, Ebbini ES, et al. Treatment planning for hyperthermia with ultrasound phased arrays. IEEE Trans Ultrason, Ferroelect, Freq Contr. 1996;43(6):1074–1084. doi: 10.1109/58.542051.
  • Montaldo G, Tanter M, Fink M. Time reversal of speckle noise. Phys Rev Lett. 2011;106(5):054301. doi: 10.1103/PhysRevLett.106.054301.
  • Mallart R, Fink M. Adaptive focusing in scattering media through sound‐speed inhomogeneities: the van cittert zernike approach and focusing criterion. J Acoust Soc Am. 1994;96(6):3721–3732. doi: 10.1121/1.410562.
  • Mallart R, Fink M. The van cittert–zernike theorem in pulse echo measurements. J Acoust Soc Am. 1991;90(5):2718–2727. doi: 10.1121/1.401867.
  • Thomas GPL, Khokhlova TD, Bawiec CR, et al. Phase-Aberration correction for HIFU therapy using a multielement array and backscattering of nonlinear pulses. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(4):1040–1050. doi: 10.1109/TUFFC.2020.3030890.
  • Bawiec CR, Rosnitskiy PB, Peek AT, et al. Inertial cavitation behaviors induced by nonlinear focused ultrasound pulses. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2884–2895. doi: 10.1109/TUFFC.2021.3073347.
  • Zhang B, Pinton GF, Nightingale KR. On the relationship between spatial coherence and in situ pressure for abdominal imaging. Ultrasound Med Biol. 2021;47(8):2310–2320. doi: 10.1016/j.ultrasmedbio.2021.03.008.
  • Thomas GPL, Khokhlova TD, Sapozhnikov OA, et al. In vivo aberration correction for transcutaneous HIFU therapy using a multi-element array. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(10):2955–2964.
  • Urban M, Bernal M, Greenleaf J. Phase aberration correction using ultrasound radiation force and vibrometry optimization. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(6):1142–1153. doi: 10.1109/tuffc.2007.368.
  • Torr GR. The acoustic radiation force. Am J Phys. 1984;52(5):402–408. doi: 10.1119/1.13625.
  • Nightingale K, Bentley R, Trahey G. Observations of tissue response to acoustic radiation force: opportunities for imaging. Ultrason Imaging. 2002;24(3):129–138. doi: 10.1177/016173460202400301.
  • Pinton GF, Trahey GE, Dahl JJ. Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(4):754–765. doi: 10.1109/TUFFC.2011.1868.
  • Soulioti DE, Santibanez F, Pinton G. Deconstruction and reconstruction of image-degrading effects in the human abdomen using Fullwave: phase aberration, multiple reverberation, and trailing reverberation. 2021 [cited 2022 Mar 1]; Available from: https://arxiv.org/abs/2106.13890.
  • Pernot M, Montaldo G, Tanter M, et al. “Ultrasonic stars” for time-reversal focusing using induced cavitation bubbles. Appl Phys Lett. 2006;88(3):034102.
  • Kripfgans OD, Fowlkes JB, Woydt M, et al. In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(6):726–738. doi: 10.1109/tuffc.2002.1009331.
  • Couture O, Aubry JF, Tanter M, et al. Time-reversal focusing of therapeutic ultrasound on targeted microbubbles. Appl Phys Lett. 2009;94(17):173901.
  • Seo J, Choi JJ, Fowlkes JB, et al. Aberration correction by nonlinear beam mixing: generation of a pseudo point sound source. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(11):1970–1980. doi: 10.1109/tuffc.2005.1561666.
  • Rojas JD, Dayton PA. Optimizing acoustic activation of phase change contrast agents with the activation pressure matching method: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):264–272. doi: 10.1109/TUFFC.2016.2616304.
  • Lindsey BD, Nicoletto HA, Bennett ER, et al. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. Ultrasound Med Biol. 2014;40(1):90–101. doi: 10.1016/j.ultrasmedbio.2013.09.006.
  • Sheeran PS, Dayton PA. Phase-Change contrast agents for imaging and therapy. Curr Pharm Des. 2012;18(15):2152–2165. doi: 10.2174/138161212800099883.
  • Sheeran PS, Wong VP, Luois S, et al. Decafluorobutane as a phase-change contrast agent for Low-Energy extravascular ultrasonic imaging. Ultrasound Med Biol. 2011;37(9):1518–1530. doi: 10.1016/j.ultrasmedbio.2011.05.021.
  • Psychoudakis D, Fowlkes JB, Volakis JL, et al. Potential of microbubbles for use as point targets in phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(12):1639–1648. doi: 10.1109/tuffc.2004.1386681.
  • Haworth KJ, Fowlkes JB, Carson PL, et al. Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization. Ultrasound Med Biol. 2008;34(3):435–445. doi: 10.1016/j.ultrasmedbio.2007.08.004.
  • Demené C, Deffieux T, Pernot M, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and ultrasound sensitivity. IEEE Trans Med Imaging. 2015;34(11):2271–2285. doi: 10.1109/TMI.2015.2428634.
  • Soulioti DE, Espíndola D, Dayton PA, et al. Super-resolution imaging through the human skull. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(1):25–36. doi: 10.1109/TUFFC.2019.2937733.
  • O'Reilly MA, Hynynen K. A super-resolution ultrasound method for brain vascular mapping. Med Phys. 2013;40(11):110701. doi: 10.1118/1.4823762.
  • Jones RM, Huang Y, Meng Y, et al. Echo-Focusing in transcranial focused ultrasound thalamotomy for essential tremor: a feasibility study. Mov Disord. 2020;35(12):2327–2333. doi: 10.1002/mds.28226.
  • Robin J, Demené C, Heiles B, et al. In vivo adaptive focusing for clinical contrast-enhanced transcranial ultrasound imaging in human. Phys Med Biol. 2023;68(2):025019. doi: 10.1088/1361-6560/acabfb.
  • Ivancevich NM, Pinton GF, Nicoletto HA, et al. Real-time 3-D contrast-enhanced transcranial ultrasound and aberration correction. Ultrasound Med Biol. 2008;34(9):1387–1395. doi: 10.1016/j.ultrasmedbio.2008.01.015.
  • Fabiilli ML, Haworth KJ, Fakhri NH, et al. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(5):1006–1017. doi: 10.1109/TUFFC.2009.1132.
  • Leighton TG. The acoustic bubble. San Diego, United States: academic Press; 1994.
  • Zhong P, Cioanta I, Cocks FH, et al. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am. 1997;101(5 Pt 1):2940–2950. doi: 10.1121/1.418522.
  • Johnston K, Tapia-Siles C, Gerold B, et al. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal. Ultrasonics. 2014;54(8):2151–2158. doi: 10.1016/j.ultras.2014.06.011.
  • Sukovich JR, Macoskey JJ, Lundt JE, et al. Real-Time transcranial histotripsy treatment localization and mapping using acoustic cavitation emission feedback. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(6):1178–1191. doi: 10.1109/TUFFC.2020.2967586.
  • Lauterborn W, Vogel A. Shock wave emission by laser generated bubbles. In: Delale CF, editor. Bubble dynamics and shock waves [internet]. Berlin, Heidelberg: springer Berlin Heidelberg; 2013. p. 67–103. Available from: doi: 10.1007/978-3-642-34297-4_3.
  • Gateau J, Marsac L, Pernot M, et al. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Trans Biomed Eng. 2010;57(1):134–144. doi: 10.1109/TBME.2009.2031816.
  • Macoskey JJ, Hall TL, Sukovich JR, et al. Soft-tissue aberration correction for histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(11):2073–2085. doi: 10.1109/TUFFC.2018.2872727.
  • Yeats E, Lu N, Sukovich JR, et al. Soft tissue aberration correction for histotripsy using acoustic emissions from cavitation cloud nucleation and collapse. Ultrasound Med Biol. 2023;49(5):1182–1193. doi: 10.1016/j.ultrasmedbio.2023.01.004.
  • Mørch KA. On the collapse of cavity clusters in flow cavitation. In: Lauterborn W, editor. Cavitation and inhomogeneities in underwater acoustics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1980. p. 95–100.
  • Wang YC, Brennen CE. Shock wave development in the collapse of a cloud of bubbles. In: cavitation and multiphase flow [Internet]. New York, NY: American Society of Mechanical Engineers; 1994. p. 15–19. Fluids Engineering Division; vol. 194).
  • Xu Z, Fowlkes JB, Rothman ED, et al. Controlled ultrasound tissue erosion: the role of dynamic interaction between insonation and microbubble activity. J Acoust Soc Am. 2005;117(1):424–435. doi: 10.1121/1.1828551.
  • Cerrolaza JJ, Safdar N, Biggs E, et al. Renal segmentation from 3D ultrasound via fuzzy appearance models and patient-specific alpha shapes. IEEE Trans Med Imaging. 2016;35(11):2393–2402. doi: 10.1109/TMI.2016.2572641.
  • Marsousi M, Plataniotis KN, Stergiopoulos S. An automated approach for kidney segmentation in Three-Dimensional ultrasound images. IEEE J Biomed Health Inform. 2017;21(4):1079–1094. doi: 10.1109/JBHI.2016.2580040.
  • Fellgett PB, Linfoot EH, Redman RO. On the assessment of optical images. Philos Trans R Soc Lond Ser Math Phys Sci. 1997;247(931):369–407.